BROADMOOR SERIES
Also covers Simplicity LTG & LTH Series, AGCO Allis 1600 Series & Massey Ferguson 2600 Series

Service & Repair Manual
SECTION CONTENTS

Models Covered
- Models & Identification ... 1-2

Introduction
- Introduction .. 1-3
 - Manual Content ... 1-3

Safety Rules
- Safety Rules - General Operation .. 1-4
 - Safety Rules - Service And Maintenance 1-6

General Repair Information
- Bearings & Bushings ... 1-9
- Belts & Pulleys ... 1-9
- Electrical Parts ... 1-9
- Fasteners & Hardware ... 1-10
- Genuine Replacement Parts .. 1-10
- Hydraulic Parts .. 1-10
- Paint ... 1-10
- Required Tools & Equipment .. 1-10
- Systems Checks .. 1-10
- Specifications .. 1-11
- Torque Specifications .. 1-13
MODELS COVERED & IDENTIFICATION NUMBERS

This manual contains service information for the models listed below. Consult the Identification Tag located on the tractor frame for the manufacturer’s identification number and serial number.

Always use the manufacturer’s identification number and serial number when ordering parts or documentation. Attachments are not covered in this manual. Refer to the attachment operator’s manual or authorized dealer for service information.

Transmissions are identified by identification number tags located on the transmission casing.

Tractors

<table>
<thead>
<tr>
<th>Mfg. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1691795</td>
<td>12.5LTH</td>
</tr>
<tr>
<td>1691807</td>
<td>16LTH</td>
</tr>
<tr>
<td>1691817</td>
<td>1613H</td>
</tr>
<tr>
<td>1691819</td>
<td>1616H</td>
</tr>
<tr>
<td>1691886</td>
<td>12.5LTH</td>
</tr>
<tr>
<td>1691888</td>
<td>1613H</td>
</tr>
<tr>
<td>1691891</td>
<td>12.5LTG</td>
</tr>
<tr>
<td>1691893</td>
<td>1613G</td>
</tr>
<tr>
<td>1692071</td>
<td>16LTH</td>
</tr>
<tr>
<td>1692073</td>
<td>12.5LTH</td>
</tr>
<tr>
<td>1692075</td>
<td>1616H</td>
</tr>
<tr>
<td>1692076</td>
<td>1613H</td>
</tr>
<tr>
<td>1692182</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692184</td>
<td>1614H</td>
</tr>
<tr>
<td>1692261</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692265</td>
<td>1613H</td>
</tr>
<tr>
<td>1692279</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692281</td>
<td>1614H</td>
</tr>
<tr>
<td>1692283</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692285</td>
<td>1616H</td>
</tr>
<tr>
<td>1692287</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692289</td>
<td>1615G</td>
</tr>
<tr>
<td>1692414</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692416</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692416</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692418</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692420</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692430</td>
<td>1614VH</td>
</tr>
<tr>
<td>1692432</td>
<td>1614H</td>
</tr>
<tr>
<td>1692434</td>
<td>1615G</td>
</tr>
<tr>
<td>1692436</td>
<td>1616H</td>
</tr>
<tr>
<td>1692497</td>
<td>2614H</td>
</tr>
<tr>
<td>1692499</td>
<td>2616H</td>
</tr>
<tr>
<td>1692528</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692530</td>
<td>1615H</td>
</tr>
<tr>
<td>1692609</td>
<td>Broadmoor</td>
</tr>
<tr>
<td>1692613</td>
<td>1615H</td>
</tr>
</tbody>
</table>

Mower Decks

<table>
<thead>
<tr>
<th>Mfg. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1691704</td>
<td>38” Mower Deck</td>
</tr>
<tr>
<td>1691705</td>
<td>44” Mower Deck</td>
</tr>
<tr>
<td>1691815</td>
<td>38” Mower Deck</td>
</tr>
<tr>
<td>1691816</td>
<td>44” Mower Deck</td>
</tr>
</tbody>
</table>
INTRODUCTION

This manual is divided into eight major sections of service information required for the models specified. These sections are:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General Information</td>
</tr>
<tr>
<td>2.</td>
<td>Troubleshooting</td>
</tr>
<tr>
<td>3.</td>
<td>Maintenance</td>
</tr>
<tr>
<td>4.</td>
<td>Adjustments</td>
</tr>
<tr>
<td>5.</td>
<td>Electrical</td>
</tr>
<tr>
<td>6.</td>
<td>General Repair</td>
</tr>
<tr>
<td>7.</td>
<td>Transmission Removal & Repair</td>
</tr>
<tr>
<td>8.</td>
<td>Mower Deck repair</td>
</tr>
</tbody>
</table>

1. General Information

Contains general information such as models and manufacturing numbers, general repair instructions for components, and important safety instructions for operating and servicing the units.

2. Troubleshooting

Provides troubleshooting information pertaining to unit operation.

3. Maintenance

Contains basic service information for normal maintenance and off-season storage.

4. Adjustments

Contains basic service information and procedures for adjustments.

5. Electrical

Contains information and service procedures for troubleshooting and repairs of electrical systems.

6. General Repair

Covers disassembly, inspection, and repair of all major assembly groups except transmissions.

7. Transmission Removal & Repair

Covers removal, disassembly, inspection, and repair of Simplicity serviceable transmissions.

8. Deck Repair

Covers common mower deck service procedures.

Since part numbers are subject to change and may vary by model year and manufacturing number, all parts in this manual are referred to by general description. Specific part number information may be found in the respective Parts Manual for the unit being serviced.

Always use the manufacturing number that appears on the Identification Tag of the unit you are servicing to identify component part numbers.

MANUAL CONTENT

This manual is intended primarily for use by dealer service personnel as a technical reference manual or as a compliment to normal service training.

While the information in this manual has been developed to permit mechanics and service technicians to perform most service procedures quickly and effectively, it is assumed that those using this manual will have some outdoor power equipment service experience or other basic power equipment service training with similar types of products.

In addition, it is assumed that all those performing service on these units are familiar with the general principles of operation of these units, and understand all operating controls, safety instructions, and normal handling precautions for servicing large, high horsepower riding tractors and mowers.

Engine information is available from the appropriate engine manufacturer in a separate service manual.

General engine information and basic engine troubleshooting information is provided, but is intended for general guidance only. The engine manufacturer’s manual should always be consulted first before making any major adjustments, part changes, or other major repairs.

This manual includes all relevant service information for model years 1990 through 1995, and whenever necessary, includes inset illustrations or other references to help identify previous part designs and alternative service procedures.

The service techniques in this manual also assume that the person providing service has access to a standard assortment of mechanic’s hand tools, and approaches most disassembly and repair procedures with availability of these basic tools in mind. Whenever specialized or custom tools are available to save time, reduce effort, or improve overall service efficiency, the most effective safe repair method available should be utilized.
Read these safety rules and follow them closely. Failure to obey these rules could result in loss of control of rider, severe personal injury or death to you, or bystanders, or damage to property or equipment. This mowing deck is capable of amputating hands and feet and throwing objects. The triangle in text signifies important cautions or warnings which must be followed.

GENERAL OPERATION

- Read, understand, and follow all instructions in the manual and on the unit before starting.
- Only allow responsible adults, who are familiar with the instructions, to operate the unit.
- Clear the area of objects such as rocks, toys, wire, etc., which could be picked up and thrown by the blade(s).
- Be sure the area is clear of other people before mowing. Stop unit if anyone enters the area.
- Never carry passengers.
- Do not mow in reverse unless absolutely necessary. Always look down and behind before and while travelling in reverse.
- Be aware of the mower discharge direction and do not point it at anyone. Do not operate the mower without either the entire grass catcher or the deflector in place.
- Slow down before turning.
- Never leave a running unit unattended. Always disengage the PTO, set parking brake, stop engine, and remove keys before dismounting.
- Turn off the PTO switch to disengage the blades when not mowing.
- Stop engine before removing grass catcher or unclogging chute.
- Mow only in daylight or good artificial light.
- Do not operate the unit while under the influence of alcohol or drugs.
- Watch for traffic when operating near or crossing roadways.
- Use extra care when loading or unloading the unit into a trailer or truck.

SLOPE OPERATION

Slopes are a major factor related to loss-of-control and tip-over accidents, which can result in severe injury or death. All slopes require extra caution. If you cannot back up the slope or if you feel uneasy on it, do not mow it.

WARNING - SLOPE OPERATION

Never operate on slopes greater than 30 percent (16.7°) which is a rise of three feet vertically in 10 feet horizontally. When operating on slopes that are greater than 15 percent (8.5°) but less than 30 percent use front counterweights and rear wheel weights (see your dealer). Select slow ground speed before driving onto slope. In addition to front and rear weights, use extra caution when operating on slopes with rear-mounted grass catcher. Mow UP and DOWN the slope, never across the face, use caution when changing directions and DO NOT START OR STOP ON SLOPE.

Do
- Follow manufacturer’s recommendations of wheel weights or counterweights to improve stability.
- Mow up and down slopes, not across.
- Remove obstacles such as rocks, tree limbs, etc.
- Watch for holes, ruts, or bumps. Uneven terrain could overturn the unit. Tall grass can hide obstacles.
- Use slow speed. Choose a low gear so that you will not have to stop or shift while on the slope.
- Use extra care with grass catchers or other attachments. These can change the stability of the unit.
- Keep all movement on the slopes slow and gradual. Do not make sudden changes in speed or direction.

Do Not
- Do not start or stop on a slope. If tires lose traction, disengage the blade(s) and proceed slowly straight down the slope.
- Do not turn on slopes unless necessary, and then, turn slowly and gradually downhill, if possible.
- Do not mow near drop-offs, ditches, or embankments. The mower could suddenly turn over if a wheel is over the edge of a cliff or ditch, or if an edge caves in.
- Do not mow on wet grass. Reduced traction could cause sliding.
- Do not try to stabilize the unit by putting your foot on the ground.
- Do not use grass catcher on steep slopes.
CHILDREN
Tragic accidents can occur if the operator is not alert to the presence of children. Children are often attracted to the unit and the mowing activity. Never assume that children will remain where you last saw them.

- Keep children out of the mowing area and under the watchful care of another responsible adult.
- Be alert and turn unit off if children enter the area.
- Before and when backing, look behind and down for small children.
- Never carry children. They may fall off and be seriously injured or interfere with safe unit operation.
- Never allow children to operate the unit.
- Use extra care when approaching blind corners, shrubs, trees, or other objects that may obscure vision.

TRANSPORTING AND STORAGE
- Always observe safe refueling and fuel handling practices when refueling the tractor after transportation, service, or storage.
- Always follow the engine manual instructions for storage preparations when preparing the tractor for both short and long term periods.
- Always follow the engine manual instructions for proper start-up procedures when returning the unit to service.
- Never store the unit or fuel container inside where there is an open flame or pilot light, such as in a water heater, gas furnace, or stove. Allow unit to cool before storing.

GENERAL SAFETY
All WARNING, CAUTION, and instructional messages appearing in decals on the tractor and mower being serviced must be carefully read and obeyed. Severe personal injury can result when these instructions are not followed. The information is for your safety, as well as those who operate the equipment, and it is important!

If any of these decals are lost or damaged, replace them at once. See your Parts Manual for replacement information.

These labels are easily applied and will act as a constant visual reminder to you, the operator, and others who may use the equipment, to follow the safety instructions necessary for safe, effective operation.
SERVICE AND MAINTENANCE

The service information provided in this manual is intended to provide you with the knowledge required to perform a wide range of service procedures on the listed equipment.

While appropriate safety reminders and safety warnings have been included here and elsewhere in this manual to help promote the use of safe service techniques, you must also observe all appropriate shop safety rules whenever performing these procedures.

No single manual, including this one, can include every possible warning or safety instruction necessary to guarantee complete safety - you must apply your common sense and knowledge of shop and power equipment safety whenever performing service, whenever working around others who are operating, servicing, or handling equipment, and whenever you are present in a work environment where hand or power tools, shop equipment, or outdoor power equipment may be present.

This includes taking the necessary safety precautions to help ensure a safe workplace, exercising reasonable care to avoid unsafe acts, and being alert for potential hazards as you move about the workplace or engage in various service activities.

If you encounter a service situation involving the use of an unfamiliar tool, procedure, or part, and rereading the appropriate section of this manual does not provide the information you want, contact your Simplicity dealer before proceeding. Never attempt a repair that you’re not sure about, since help is usually never more than just a phone call away.

Practicing safe service procedures not only helps protect you and those you work around, it also contributes to providing safe, reliable equipment.

Personal Protective Equipment

- Wear protective safety glasses whenever using hand or power tools, shop equipment, and whenever working under power equipment to protect your eyes from falling debris and small parts.
- Wear safety goggles or full face protection when handling battery electrolyte fluid, or when performing grinding or sharpening operations that produce sparks or flying debris. Extensive grinding may require the use of protective sleeves and an apron.
- Wear work gloves when handling sharp surfaces such as mower blades, or when working around sharp edges. Never wear gloves that are loose fitting or that have tie straps, as these could cause your hands to get caught by rotating parts, resulting in serious injury. Chemical-resistant Rubber gloves are recommended when handling or pouring battery electrolyte.
- Steel-toe safety shoes are highly recommended to protect feet from falling tools, heavy parts, and other shop equipment.

Fuel Handling Safety

- Always use extra care when handling gasoline - gasoline is highly flammable, and gasoline vapors are explosive as well as toxic if inhaled.
- Never store fuel indoors, or refuel a unit indoors. Gasoline vapors can easily travel unseen to distant sources of ignition such as pilot lights or open flames on water heaters, furnaces, stoves, or other gas operated appliances, sparks from electric motors or other electrically-operated tools and equipment, welding equipment, grinders, or burning smoking materials. Contact with these or any other sources of ignition will cause an explosion and/or fire, serious personal injury, and damage to property and equipment.
- Never transfer gasoline from one container to another unless the containers are connected by an approved grounding strap. Hand or power operated transfer pumps can generate a static charge of electricity, causing dangerous sparking and ignition of fuel or fuel vapors. Always follow the pump manufacturer’s safety and operating instructions.
- Use only approved containers for fuel, and always handle the container with extreme care to avoid spillage or leaking of explosive vapors.
- Never smoke or allow others in the area to smoke while refilling the fuel tank, or when handling gasoline cans. Make sure any smoking materials that had been in use in the area are fully extinguished before opening a fuel can or starting refueling.
Exhaust Gas Safety

- Internal combustion engines produce and exhaust Carbon Monoxide (CO), an odorless, colorless, gas that causes dizziness, nausea, flu-like symptoms, unconsciousness, or even brain damage or death, if breathed for prolonged periods.
- If exposed to Carbon Monoxide gas, get to a fresh air source immediately and seek medical attention. CO can build up in your blood, and can cause lingering symptoms or permanent damage if left untreated.
- Operate the unit outdoors or in a well ventilated area, or pipe exhaust gases out of the work area to an outside location where the exhaust can be dissipated safely away from doors, windows, air conditioners, or other potential sources of outside-air intake that could permit reentry of hazardous fumes.
- Never enter an enclosed area where an engine has been running and exhaust gases have been allowed to collect. Open adjacent windows or doors first to permit outside air to ventilate the area, and allow sufficient time for a complete air exchange to occur.

Battery/Electrolyte Safety

- Lead-Acid batteries use an electrolyte containing sulfuric acid, a highly corrosive liquid that can cause severe chemical burns if allowed to come into contact with skin, or blindness if allowed to contact your eyes. Always wear approved eye goggles or a full face shield and protective gloves when handling electrolyte or filling the battery.
- Lead-acid batteries also produce hydrogen, a colorless, highly explosive gas that can be easily ignited by a single spark. Charging the battery incorrectly or hooking up jumper cables improperly can cause sparking, and must be avoided. Always follow recommended battery charging and jumper cable procedures.
- When removing or installing battery cables, disconnect the negative cable FIRST, and reconnect it LAST. If not done in this order, the positive terminal could be accidentally shorted to the frame by a tool, creating a dangerous spark that can ignite nearby fuel vapors or escaping hydrogen gas from the battery.
- Keep battery securely fastened in position with vent tube directed down and out of battery compartment. Replace battery if electrolyte leakage occurs. Make sure the battery vent tube is properly installed, and is not plugged with clippings or other debris. Replace the vent tube if cracked, damaged, or missing from unit.
- Old batteries should be disposed of by recycling.

Electrical System Safety

- Loose connectors, worn wires, damaged wire insulation, and loose termination hardware can cause sparks, short-circuits, and erratic equipment operation. Always check wiring for damage, and make appropriate repairs before placing unit back into operation.
- Use care when working around exposed terminals to prevent short-circuiting the electrical system. Sparking, electric shocks, and damage to the system may result from accidental contact between terminals and metal hand tools.

Elevation Of Unit Safety

- Always support unit on approved jack stands when working on an elevated unit, and keep unit from rolling by engaging parking brake and placing wheel chocks behind wheels still on floor or work table.
- Secure unit to work-surface of scissor-lift worktables or other powered lift tables in accordance with the manufacturer’s instructions. Unsecured units may roll unexpectedly while work is being done, causing injuries.
- Never work under an elevated unit unless it is properly supported by jack stands, locked from rolling with wheel chocks or equivalent, and you can quickly escape from under the unit in an emergency using a rolling device such as a mechanic’s creeper.
- Always protect your eyes from falling debris or small parts by wearing approved safety glasses or goggles.
- Remove the ignition key and disconnect the spark plug wires before working under a unit. Accidental or inadvertent starting could result in serious injuries.

Proper Tool Use

- Use power and hand tools only for the use that they were designed. Never alter or modify tools, or improvise using tools that are not suitable for the job at hand.
- Keep all hand and power tools in good repair, and put them away when done to avoid cluttering the work area. Use extra care when using corded tools around moving or rotating parts such as belts and pulleys, since the cord could get caught and suddenly pull the tool, or you, into the area of moving parts.
- Always check the unit to ensure that all hand and power tools and tool attachments have been removed from the unit after use. Small tools and tool attachments left on the equipment can fall into the cutting path when the unit is placed into service, and become a hazard to bystanders if struck by mower blades.
1 General Information

Safety Rules

Work Area Safety

- Always keep the work area clear of clutter from discarded parts, and debris from parts boxes or packaging materials. Small parts, hardware items, and other debris or refuse left lying around can become slip, trip, and fall hazards if not removed and discarded of properly.
- Always observe general shop safety rules for housekeeping, and tend to oil spills and other spilled fluids promptly to prevent slip and fall injuries.
- Allow sufficient work area around the equipment you are working on to permit comfortable working positions. Never put yourself in a position that would prevent you from escaping quickly in the event of emergencies such as sudden shifts in equipment position, fire, or other situations requiring an immediate reaction on your part.

Compressed Air Safety

- Always use care when using compressed air to blow dirt and debris off equipment - always direct the air blast away from yourself and others in the area, and protect your eyes with safety glasses to prevent injury from particles that may blow back toward your face.
- Never use high pressure air directly against your skin to clean dirt and debris - the air pressure could actually force foreign material or fluids into your skin, causing serious injuries.
- Use care when filling tires - lawn and garden tractors utilize low pressure tires, and over-pressurization is hazardous to you and anyone who operates the equipment with improper tire pressures. Always consult the air pressure recommendations for the unit involved before adding additional air to the tires.

Grease & Lubricant Safety

- Normal service and maintenance involves the use of oils and greases that could present a fire hazard if not handled properly. Always dispose of oily rags properly to prevent fires caused by spontaneous combustion.
- Spilled lubricants pose dangerous slip hazards and must be taken care of immediately. Wipe up spills carefully, or use absorbent materials to soak up spilled fluids. Always dispose of rags, paper towels, and other saturated absorbents properly.
- Store oils and greases away from flame or other ignition sources. Petroleum-based fluids can be ignited by smoking materials and sparks - always treat oils and greases as potentially flammable materials. Always cap oil and grease containers when done using, and store or dispose of properly.

General Servicing Safety

- Always check safety devices and switches for proper operation - never alter these devices or make temporary or makeshift repairs. Use only factory-authorized parts and procedures, and check newly-installed parts for proper operation.
- Make sure all hardware items are properly tightened, especially blade attachment bolts. Replace any hardware that appears damaged.
- Check brake operation, and adjust or repair as required. Always comply with factory specifications on settings and adjustments.
- Check grass catcher components for wear, damage, or deterioration, and replace with factory authorized parts if necessary.
- Always make repairs using factory authorized replacement parts only. Using parts that don't meet factory specifications can result in sudden or premature failures, poor or erratic equipment performance, and potential safety hazards to operators and bystanders.
- Always comply with factory specifications on settings and adjustments when installing new parts, making repairs, or performing routine service procedures.
- Always test repairs before releasing units to customers, paying special attention to any items that are safety-related. Correct any problems noted, and re-check to ensure that the problems have been fully remedied.
- Make sure all safety and operating instruction decals are legible, properly located, and securely attached. Replace any decals that can't be read or are in danger of falling off.
- Always advise equipment owners of any potential operating or safety problems that may be arising due to anticipated wear, and request that the owner address the problem before a hazard develops.
- Never allow a unit to be placed back into service if a serious safety or operating problem is evident. Advise the owner of the problem and the possible hazards associated with the problem, and request permission to correct the deficiencies.
- Use extreme care when working on older models that do not have all of the latest safety devices and switches. Disengage the PTO and transmission before starting the unit, or commencing repairs.
- Always use care when removing or installing parts to prevent damage from dropping or rough handling. Support heavy parts properly to prevent damage or personal injury to yourself and others.
GENERAL REPAIR INFORMATION

In addition to providing specific repair procedures for the equipment listed at the beginning of this section, this manual provides the following additional general instructions for dealing with repairs to various types of components.

This information is designed to help you deal more effectively with these components by providing basic service knowledge and other useful tips.

Bearings & Bushings

Roller bearings, ball bearings, and bushings are used to provide support to rotating shafts and other parts such as gears, pulleys, and sprockets that are used to transmit rotary motion. Over time, bearings and bushings may require additional lubrication to transmit this rotary motion with minimal friction, or may need replacement due to normal operation and wear. Normal service for bearings and bushings includes removal, cleaning, inspection, lubrication, and replacement.

REMOVAL

Most bearings and bushings used on the listed equipment can be easily removed by following the appropriate detailed procedures found throughout this manual. Care should always be exercised to avoid scratching or damaging the bearing or bushing, the mounting shaft, and surrounding components. Bearing or bushing removal is usually necessary when excessive play or wobble is noticed on the part it supports, when unusual noise or vibration is apparent, or when a burning smell is present at the bearing location.

CLEANING

Sealed bearings and bushings can be cleaned by careful wiping with a cloth. Bearings with one-sided or removable shields and plain bushings can be cleaned by immersion in safety solvent, and brushing with a part cleaning brush. Oil-impregnated bushings, and bushings made of nylon or other synthetic materials, can be cleaned with safety solvents, or wiped clean, but should not be immersed in solvent for periods longer than that necessary to remove heavy or caked-on build-ups of grease. All petroleum-based solvents are flammable, so appropriate precautions regarding flames, sparks, and other ignition sources should always be observed. Gasoline should never be used because of its volatility and its highly toxic nature.

INSPECTION

Once cleaned, bearings can be properly inspected for wear, scratches, visible damage such as corrosion, cracked seals or scorching, and rough, or noisy, operation. Bushings can be visually checked for scratches, uneven wear, or other visual damage.

LUBRICATION

After passing inspection, bearings and bushings should be lubricated in accordance with factory specifications, and reinstalled according to the appropriate installation instructions. New bearings and bushings must also be properly lubricated before use. For optimal performance, and as a practical preventive maintenance measure, bearings and bushings used in pairs or multiple sets should all be replaced at the same time.

Belts & Pulleys

Belts and pulleys transmit rotary motion from power sources to work components, providing the force needed to drive transmissions, operate mower decks, and power various attachments. This continual use eventually causes belts to wear out, and over time may also require the replacement of pulleys and pulley bearings. Belt wear and various types of damage are easily checked by visual examination, which is covered in greater detail elsewhere in this manual. Pulleys may also be checked visually for wear or apparent damage, but pulley bearings usually require removal, cleaning, and inspection to determine if replacement is required.

Belt and pulley life can be optimized by making sure that proper belt tension and alignment are observed when belts are installed. Proper belt tension and alignment should also be maintained by performing periodic checks and adjustments. In addition, only factory authorized replacement belts will minimize problems caused by size, thermal instability, and variations in quality.

Electrical Parts

The electrical parts used on these units has been specifically engineered for outdoor power equipment, and is designed to provide years of reliable operation. As with all electrical components and systems, electrical contacts must be kept clean and dry, and all terminations must be securely fastened or connected. Also, all electrical components, wiring, and connectors should be periodically inspected for corrosion, signs of excessive heat build-up, or other damage that signals that it is time to repair or replace the item.

Specific procedures for electrical troubleshooting and most common repairs is covered in separate sections of this manual.
1 General Information

Fasteners & Hardware
All hardware and fasteners used in this equipment must meet factory specifications for SAE grade, size, and torque, and must be kept securely tightened. Locking hardware that degrades with use should be replaced when service is performed in affected areas. Always observe factory specifications for torque, or consult the torque chart for torque information.

Genuine Replacement Parts
Only factory authorized replacement parts should be used when making repairs or performing routine maintenance. The use of parts that do not meet stringent factory specifications can cause poor performance, premature failures, and lead to potential safety hazards. In addition, the use of non-factory authorized replacement parts will void your warranty.

Hydraulic Parts
Hydraulic parts are adversely affected by dirt and contamination, and care must be exercised when performing service on these parts to prevent foreign material from entering. Specific service information appears elsewhere in this manual, and all precautions and procedures must be followed when repairing or servicing these parts.

Paint
The paint on outdoor power equipment provides for an attractive appearance, as well as a barrier to corrosion caused by exposure to moisture in the environment.

Scratches, abrasions, and other damage to painted surfaces should be repaired promptly to prevent the formation of rust and premature part failure. Factory supplied paints are available that provide both an accurate color match and superior corrosion resistance.

Required Tools & Equipment
All repairs in this manual can be accomplished with standard mechanic’s hand tools. The use of appropriate power tools such as impact wrenches and power drivers may aid in part removal and replacement, but care must be exercised to avoid causing damage to components from excessive tightening. Transmission service, steering service, tire and wheel service, and service to components located under the frame also requires the use of a jack with suitable capacity, and jack stands to support the unit being worked on.

Systems Checks
In addition to performing individual component service, components affected by related parts changes should also receive attention at the time service is performed. Examples of this include part replacements that are part of a safety device, electrical components, transmission components, and pulleys that are part of the same power delivery system. Giving attention to related parts will help ensure that the parts most likely to be affected by the wear of similar or nearby parts, or parts subjected to the same amount of stress or wear, are given appropriate attention before a failure can occur.
Specifications

ENGINE

<table>
<thead>
<tr>
<th>14 & 16 HP Briggs & Stratton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Horsepower</td>
</tr>
<tr>
<td>Cylinders</td>
</tr>
<tr>
<td>Bore</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Displacement</td>
</tr>
<tr>
<td>Construction</td>
</tr>
<tr>
<td>Electrical</td>
</tr>
<tr>
<td>System</td>
</tr>
<tr>
<td>Ignition</td>
</tr>
<tr>
<td>Air Cleaner</td>
</tr>
<tr>
<td>Lubrication</td>
</tr>
<tr>
<td>Oil Capacity</td>
</tr>
<tr>
<td>Fuel Tank</td>
</tr>
<tr>
<td>Muffler</td>
</tr>
</tbody>
</table>

15 HP Briggs & Stratton

Make	Briggs & Stratton
Model	Vanguard
Horsepower	15 HP @ 3600 rpm
Cylinders	1
Bore	3.44 In. (87.3 mm)
Stroke	3.06 In. (77.7 mm)
Displacement	29.3 Cu. In. (480 cc)
Construction	Overhead Valve, Cast Iron Sleeves, Aluminum Crankcase
Electrical	12 Volt, 9 Amp Alternator Regulated
System	Battery: 340 Cold Cranking Amps, 41 min. Reserve Capacity, Industrial Rated Starter Motor
Ignition	Magnetron Electronic Ignition
Air Cleaner	Ducted Paper Cartridge and Foam Precleaner large 325 sq. in. Air Filtering System
Lubrication	Splash Lube with Circulating Pump & Filter
Oil Capacity	3.5 Pints w/Filter (1.6 L)
Fuel Tank	Material: Non-Corrosive Polyethylene Fuel Tank Gauge Built Into Filler Cap Capacity: 4 Gallons (15.1 L)
Muffler	Quiet Compact, Low Back Pressure

14 HP Kohler

Make	Kohler
Model	Command™
Horsepower	14 HP @ 3600 rpm
Cylinders	1
Bore	3.43 In. (87 mm)
Stroke	2.64 In. (67 mm)
Displacement	24.3 Cu. In. (398 cc)
Construction	Overhead Valve, Cast Iron Sleeves, Aluminum Crankcase
Electrical	12 Volt, 15 Amp Alternator Regulated
System	Battery: 340 Cold Cranking Amps, 41 min. Reserve Capacity
Ignition	High Energy Electronic Ignition
Air Cleaner	Ducted Paper Cartridge and Foam Precleaner
Lubrication	Full Pressure Lube w/Oil Filter
Oil Capacity	4.0 Pints w/Filter (1.9 L)
Fuel Tank	Material: Non-Corrosive Polyethylene Fuel Tank Gauge Built Into Filler Cap

TRANSMISSION

Gear Models

| Type | Spur Gear |
| Material | Gear: Heat Treated |
| Shaft: Hardened and Ground |
| Bearings: Needle Roller, Sealed Ball and Bushings |
| **Lubrication** | Bentonite Grease |
| **Speeds** | Five Forward, One Reverse |
| @ 3400 rpm |
1st:	1.1 MPH (1.8 km/h)
2nd:	2.2 MPH (3.5 km/h)
3rd:	3.4 MPH (5.5 km/h)
4th:	4.2 MPH (6.8 km/h)
5th:	5.1 MPH (8.2 km/h)
Reverse:	2.4 MPH (3.9 km/h)
Differential	Spur Gear Type

Hydro Models

| Type | Hydrostatic |
| Pump | Variable Displacement Piston |
1 General Information
Specifications

Motor
Fixed Displacement Piston

Hydraulic Fluid
3.5 Quarts (3.3 L) SAE 20W-50 Premium

Control
Single Lever Release
Lever for Manual Tractor Movement, Continuously Variable, Forward & Reverse, without Braking

Speeds
Forward: 0-5.5 MPH (0-8 km/h)
Reverse: 0-1.7 MPH (0-2.7 km/h)

Differential
Automotive Type

Turning Radius
Inside Rear Tire 16 In. (40.6 cm)

DIMENSIONS

Tractor
Overall Length 67 In. (170.2 cm)
Overall Width 35 In. (88.9 cm)
Height To Top of Steering Wheel 40 In. (101.6 cm)
To Top of Engine Cover 34 In. (86.7 cm)
Wheel Base 48 In. (121.9 cm)
Weight Net: 455 lbs. (206 kg)
(approx.) w/o mower Shipping: 575 lbs. (261 kg)

Mower - 38"
Effective Cutting Width 38 In. (96.5 cm)
Overall Width 49.5 In. (125.7 cm)
with Deflector Weight 100 lbs. (45 kg)
Variable Cutting Ht. 1-3.6 in. (2.5 to 91 cm)
Blade Arrangement Two Blades
Mower Drive V-Belt From Tractor PTO Pulley
Spindle Bearings Lubricated and Sealed Ball Bearings

Mower - 44"
Effective Cutting Width 44 In. (111.8 cm)
Overall Width 56 In. (142.2 cm)
with Deflector Weight 115 lbs. (52 kg)
Variable Cutting Ht. 1-3.6 In. (2.5 to 91 cm)
Blade Arrangement Three Staggered Blades
Mower Drive V-Belt From Tractor PTO Pulley
Spindle Bearings Lubricated and Sealed Ball Bearings

CONTROLS

Steering
Full Circle Steering Wheel System Gear and Sector

Clutch/Brake Pedal
Combination Clutch/Brake/Parking Brake Standard Equipment
Location
-Mower Lift Lever Right Side, Lower Dash Tower
-PTO Clutch Electric, Dash Mounted
-Ground Speed Lever Dash Mounted
-Ignition Key Switch on dash panel
-Throttle Lever and Choke Lever on dash panel
-Light Switch on dash panel
-Separate Indicator Lights for Safety
-Interlock Switch Operator Present
-Transmission Neutral, PTO Disengaged
-Clutch/Brake Pedal Depressed
-Low Oil Pressure Warning Light

CHASSIS

Frame
Heavy Gauge Steel Channel
Power Take-Off Point Front
Engine Mounting Above Front Axle
Pivot Point Location Front Axle

Rear Wheels
Tire Size 20 x 8.00-10 Turf Type
Pneumatic Inflation Pressure 6-8 psi (41-55 kPa)

Front Wheels
Tire Size 15 x 6.00-6
Pneumatic Inflation Pressure 12-15 psi (82-103 kPa)

Front Axle
1-3/4" x 3" 12 Ga. Fabricated Rectangular Tube

Accessibility
Hood Tips Forward

Seat
Type Bucket, High Back, Adjustable w/Spring Suspension; Adjustable to Suit Different Size Operators

Turning Radius
Inside Rear Tire 16 In. (40.6 cm)

DIMENSIONS

Tractor
Overall Length 67 In. (170.2 cm)
Overall Width 35 In. (88.9 cm)
Height To Top of Steering Wheel 40 In. (101.6 cm)
To Top of Engine Cover 34 In. (86.7 cm)
Wheel Base 48 In. (121.9 cm)
Weight Net: 455 lbs. (206 kg)
(approx.) w/o mower Shipping: 575 lbs. (261 kg)

Mower - 38"
Effective Cutting Width 38 In. (96.5 cm)
Overall Width 49.5 In. (125.7 cm)
with Deflector Weight 100 lbs. (45 kg)
Variable Cutting Ht. 1-3.6 in. (2.5 to 91 cm)
Blade Arrangement Two Blades
Mower Drive V-Belt From Tractor PTO Pulley
Spindle Bearings Lubricated and Sealed Ball Bearings

Mower - 44"
Effective Cutting Width 44 In. (111.8 cm)
Overall Width 56 In. (142.2 cm)
with Deflector Weight 115 lbs. (52 kg)
Variable Cutting Ht. 1-3.6 In. (2.5 to 91 cm)
Blade Arrangement Three Staggered Blades
Mower Drive V-Belt From Tractor PTO Pulley
Spindle Bearings Lubricated and Sealed Ball Bearings

Turning Radius
Inside Rear Tire 16 In. (40.6 cm)
General Information

Torque Specifications

TORQUE SPECIFICATIONS FOR STANDARD MACHINE HARDWARE
(Tolerance ± 20%)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>SAE GRADE #2</th>
<th>SAE GRADE #5</th>
<th>SAE GRADE #8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in/lbs</td>
<td>ft/lbs</td>
<td>Nm.</td>
</tr>
<tr>
<td>8-32</td>
<td>19</td>
<td>2.1</td>
<td>41</td>
</tr>
<tr>
<td>8-36</td>
<td>20</td>
<td>2.3</td>
<td>43</td>
</tr>
<tr>
<td>10-24</td>
<td>27</td>
<td>3.1</td>
<td>40</td>
</tr>
<tr>
<td>10-32</td>
<td>31</td>
<td>3.5</td>
<td>43</td>
</tr>
<tr>
<td>1/4-20</td>
<td>76</td>
<td>8.6</td>
<td>12</td>
</tr>
<tr>
<td>5/16-18</td>
<td>11</td>
<td>15.0</td>
<td>25</td>
</tr>
<tr>
<td>5/16-24</td>
<td>12</td>
<td>16.3</td>
<td>27</td>
</tr>
<tr>
<td>3/8-16</td>
<td>20</td>
<td>27.2</td>
<td>45</td>
</tr>
<tr>
<td>3/8-24</td>
<td>23</td>
<td>31.3</td>
<td>50</td>
</tr>
<tr>
<td>7/16-14</td>
<td>30</td>
<td>40.8</td>
<td>70</td>
</tr>
<tr>
<td>7/16-20</td>
<td>35</td>
<td>47.6</td>
<td>80</td>
</tr>
<tr>
<td>1/2-13</td>
<td>50</td>
<td>68.0</td>
<td>110</td>
</tr>
<tr>
<td>1/2-20</td>
<td>55</td>
<td>74.8</td>
<td>120</td>
</tr>
<tr>
<td>9/16-12</td>
<td>65</td>
<td>88.4</td>
<td>150</td>
</tr>
<tr>
<td>9/16-18</td>
<td>75</td>
<td>102.0</td>
<td>170</td>
</tr>
<tr>
<td>5/8-11</td>
<td>90</td>
<td>122.4</td>
<td>220</td>
</tr>
<tr>
<td>5/8-18</td>
<td>100</td>
<td>136</td>
<td>240</td>
</tr>
<tr>
<td>3/4-10</td>
<td>160</td>
<td>217.6</td>
<td>280</td>
</tr>
<tr>
<td>3/4-16</td>
<td>180</td>
<td>244.8</td>
<td>300</td>
</tr>
<tr>
<td>7/8-9</td>
<td>140</td>
<td>190.4</td>
<td>600</td>
</tr>
<tr>
<td>7/8-14</td>
<td>155</td>
<td>210.8</td>
<td>440</td>
</tr>
<tr>
<td>1-8</td>
<td>220</td>
<td>299.2</td>
<td>580</td>
</tr>
<tr>
<td>1-12</td>
<td>240</td>
<td>326.4</td>
<td>640</td>
</tr>
</tbody>
</table>

NOTES

1. These torque values are to be used for all hardware excluding: locknuts, self-tapping screws, thread forming screws, sheet metal screws and socket head setscrews.
2. Recommended seating torque values for locknuts:
 a. for prevailing torque locknuts - use 65% of grade 5 torques.
 b. for flange whizlock nuts and screws - use 135% of grade 5 torques.
3. Unless otherwise noted on assembly drawings, all torque values must meet this specification.
SECTION CONTENTS

Troubleshooting

Troubleshooting the Tractor ... 2-2
Troubleshooting the Mower .. 2-3
TROUBLESHOOTING

The troubleshooting guide below lists some common problems, their causes, and remedies.

See the repair information on the following sections for instructions on how to perform most of these minor repairs yourself. If you prefer, all of these procedures can be performed for you by your local authorized dealer.

WARNING

Never attempt to perform repairs while the engine is running.
Always turn the engine off and remove the key.
FAILURE TO COMPLY WITH THIS, AND OTHER, SAFETY REQUIREMENTS CAN RESULT IN SERIOUS PERSONAL INJURY.

TROUBLESHOOTING THE TRACTOR

<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine will not turnover or start.</td>
<td>1. Ground speed control lever not in neutral-start position. Shift into neutral.</td>
</tr>
<tr>
<td>2. PTO (electric clutch) switch in ON position. Place in OFF position.</td>
<td></td>
</tr>
<tr>
<td>3. Out of fuel. If engine is hot, allow it to cool, then refill the fuel tank.</td>
<td></td>
</tr>
<tr>
<td>4. Engine flooded. Push choke knob in (twin cylinder models) or move throttle control out of CHOKE position (single cylinder models).</td>
<td></td>
</tr>
<tr>
<td>6. Battery terminals require cleaning. See Electrical Troubleshooting Section.</td>
<td></td>
</tr>
<tr>
<td>7. Battery discharged or dead. Recharge or replace.</td>
<td></td>
</tr>
<tr>
<td>8. Wiring loose or broken. Visually check wiring & replace broken or frayed wires. Tighten loose connections.</td>
<td></td>
</tr>
<tr>
<td>9. Solenoid or starter motor faulty. Repair or replace. See Electrical Troubleshooting Section.</td>
<td></td>
</tr>
<tr>
<td>10. Safety interlock switch or module faulty. Replace as needed. See Electrical Troubleshooting Section.</td>
<td></td>
</tr>
<tr>
<td>11. Spark plug(s) faulty, fouled or incorrectly gapped. Clean and gap or replace. See engine manual.</td>
<td></td>
</tr>
<tr>
<td>13. Gas is old or stale. Drain fuel & replace with fresh fuel.</td>
<td></td>
</tr>
<tr>
<td>Engine starts hard or runs poorly.</td>
<td>1. Fuel mixture too rich. Clean air filter. Check choke adjustment (engine speed control).</td>
</tr>
<tr>
<td>3. Spark plug(s) faulty, fouled or incorrectly gapped. Clean and gap or replace. See engine manual.</td>
<td></td>
</tr>
<tr>
<td>Engine knocks.</td>
<td>1. Low oil level. Check/add oil as required. See engine manual.</td>
</tr>
<tr>
<td>2. Using wrong grade oil.</td>
<td></td>
</tr>
<tr>
<td>Excessive oil consumption.</td>
<td>1. Engine running too hot. Clean engine fins, blower screen and air cleaner.</td>
</tr>
<tr>
<td>3. Too much oil in crankcase. Drain excessive oil.</td>
<td></td>
</tr>
<tr>
<td>2. Engine speed control is in choke position. Change engine speed.</td>
<td></td>
</tr>
<tr>
<td>Engine runs, but tractor will not drive.</td>
<td>1. Ground speed control lever in neutral. Shift in forward or reverse.</td>
</tr>
<tr>
<td>2. Transmission release lever in “push” position. Move into drive position. (Hydro models only)</td>
<td></td>
</tr>
<tr>
<td>3. Belt is broken. See Drive Belt Replacement.</td>
<td></td>
</tr>
<tr>
<td>4. Drive belt slips. See problem and cause below.</td>
<td></td>
</tr>
<tr>
<td>5. Brake is not fully released. See Brake Adjustment.</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

Tractor Troubleshooting Cont.

Tractor drive belt slips.

1. Clutch is out of adjustment. See Adjustments Section.
2. Pulleys or belt greasy or oily. Clean as required.
3. Belt stretched or worn. Replace with correct belt.

Brake will not hold.

1. Brake is incorrectly adjusted. See Brake Adjustment.
2. Internal brake disc on transaxle worn. See Brake Adjustment and Transmission Repair Sections.

Tractor steers hard or handles poorly.

1. Steering linkage is loose. Check and tighten any loose connections.
2. Improper tire inflation. Check and correct.

Drive belt does not stop when clutch/brake pedal depressed.

1. Belt stops or belt tension out of adjustment. See Adjustments Section.

TROUBLESHOOTING THE MOWER

Mower will not raise.

1. Lift link not properly attached or damaged. Attach or repair.

Mower cut is uneven.

1. Mower not leveled properly. See Mower Adjustment.
2. Tractor tires not inflated equally or properly. See Maintenance Section.

Mower cut is rough looking.

1. Engine speed too slow. Set to full speed.
3. Blades are dull. Sharpen or replace blades. See Mower Blade Service.
4. Mower drive belt slipping because it is oily or worn. Clean or replace belt as necessary.
5. Check PTO (Electric Clutch) Adjustment. See Adjustments Section.

Engine stalls easily with mower engaged.

1. Engine speed too slow. Set to full throttle.
5. Discharge chute jamming with cut grass. See Servicing the Mower Blades.

Excessive mower vibration.

1. Blade mounting screws are loose. Tighten to 50-70 ft.lbs. (74 N.m.).
2. Mower blades, arbors, or pulleys are bent. Check and replace as necessary.

Excessive belt wear or breakage.

1. Belt tension too tight. Adjust belt tension.
2. Bent or rough pulleys. Repair or replace.

Mower drive belt slips or fails to drive.

1. Idler pulley spring broken or not properly attached. Repair or replace as needed.
2. Belt stops out of adjustment. Check belt stops.
SECTION CONTENTS

A. Storage
 Temporary ... 3-2
 Long Term ... 3-2
 Starting After Storage ... 3-3

B. Preventive Maintenance Chart 3-3

C. Maintenance & Adjustments
 Engine Oil Level ... 3-4
 Engine Oil Filter .. 3-4
 Engine Air Filter .. 3-4
 Fuel Filter ... 3-5
 Spark Plug ... 3-6
 Battery Maintenance ... 3-6
 Mower Blade Service ... 3-7
 Lubricating Tractor .. 3-8
 Lubricating Mower ... 3-10
 Tire Pressure .. 3-10

WARNING

Never store a tractor, with gasoline in engine or fuel tank, in a heated shelter or in an enclosed, poorly ventilated enclosure. Gasoline fumes may reach an open flame, spark or pilot light (such as a furnace, water heater, clothes dryer, etc.) and cause an explosion.

Handle gasoline carefully. It is highly flammable and careless use could result in serious fire damage to your person or property.

Drain fuel into an approved container outdoors away from open flame or sparks.

A. STORAGE

Temporary Storage

30 Days Or Less

Remember, the fuel tank will still contain some gasoline, so never store the tractor indoors where fuel vapor could travel to any ignition source. Fuel vapor is also toxic if inhaled, so never store the tractor in any structure used for human or animal habitation.

Here is a checklist of things to do when storing your tractor temporarily or in between uses:

- Do not store the tractor in an area where children may come into contact with it. If there is any chance of unauthorized use, remove the ignition key and keep it in a safe place.
- If the tractor cannot be stored on a reasonably level surface, block the wheels.
- Clean all grass and dirt from the mower.

NOTE: If storing your tractor between winter snow removal jobs in a cold area, we suggest that you fill the fuel tank at the completion of each job to prevent water condensation in the fuel tank. Wait for the engine to cool before filling the tank.

Long Term Storage

Longer Than 30 Days

Before you store your tractor for the off-season, read the Maintenance and Storage instructions in the Safety Rules section, then perform the following steps:

1. Drain crankcase oil and refill with a grade of oil that will be required when tractor is used again.
2. Prepare the mower deck for storage as follows:
 a. Remove mower deck from the tractor. (See Operators Manual)
 b. Clean underside of mower deck.
 c. Coat all bare metal surface with paint or light coat of oil to prevent rusting.
3. Clean external surfaces and engine.
5. Clean any dirt or grass from cylinder head cooling fins, engine housing and air cleaner element.
6. Cover air cleaner and exhaust outlet tightly with plastic or other waterproof material to keep out moisture, dirt and insects.
7. Completely grease and oil tractor as outlined in the Lubrication section.
8. Clean up tractor and apply paint or rust preventative to any areas where paint is chipped or damaged.
9. Be sure the battery is filled to the proper level with water and is fully charged. Battery life will be increased if it is removed, put in a cool, dry place and fully charged about once a month. Do not allow the battery to freeze. If the battery is left in the tractor, disconnect the negative cable.
10. Drain the fuel system completely or add a gasoline stabilizer to the fuel system. If you have chosen to use a fuel stabilizer and have not drained the fuel system, follow all safety instructions and storage precautions in this manual to prevent the possibility of fire from the ignition of gasoline fumes. Remember, gasoline fumes can travel to distant sources of ignition and ignite, causing risk of explosion and fire.

NOTE: Gasoline, if permitted to stand unused for extended periods (30 days or more), may develop gummy deposits which can adversely affect the engine carburetor and cause engine malfunction. To avoid this condition, add a gasoline stabilizer to the fuel tank or drain all fuel from the system before placing unit in storage.

11. Transport the tractor to a suitable, dry, indoor location. If the tractor is to be stored 6 months or longer, block the tractor up off the wheels to relieve weight and also to keep the tires off a damp floor. Protect tires from prolonged exposure to direct sunlight.
Starting After Long Term Storage

Before starting the tractor after it has been stored for a long period of time, perform the following steps:

1. Remove the blocks from under the tractor.
2. Install the battery if it was removed.
3. Unplug the exhaust outlet and air cleaner.
4. Fill the fuel tank with fresh gasoline. See engine manual for recommendations.
5. Check crankcase oil level and add proper oil if necessary.
6. Inflate tires to proper pressure.
7. Check all fluid levels.
8. Start the engine and let it run slowly until warm. DO NOT run at high speed immediately after starting. Be sure to run engine only outdoors or in well ventilated areas.

B. PREVENTIVE MAINTENANCE CHART

The following schedule should be followed for normal care of your tractor and mower. You will need to keep a record of your operating time. Determining operating time is easily accomplished by multiplying the time it takes to do one job by the number of times you’ve done the job, or you can install the optional hour meter.

<table>
<thead>
<tr>
<th>Safety Items</th>
<th>Before First Use</th>
<th>Before Each Use</th>
<th>Every 5 Hours</th>
<th>Every 25 Hours</th>
<th>Every 100 Hours</th>
<th>Spring & Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check safety interlock system.</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Check tractor brakes.</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Check mower blade stopping time.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● After adjustment or service of electric PTO clutch</td>
</tr>
<tr>
<td>Normal Care Items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check tractor for loose hardware.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check engine oil level.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Check engine air filter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Change engine oil & filter.**</td>
<td></td>
<td></td>
<td>***50 hrs</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Lubricate tractor & mower.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*** ●</td>
</tr>
<tr>
<td>Check fluid levels & tire pressure.</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Change transmission fluid. (hydro)****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only if transaxle is serviced.</td>
</tr>
<tr>
<td>Check fuel filter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Clean battery & cables.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Clean/sharpen blades.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Inspect spark plug(s).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

* See the engine manufacturer’s owner’s manual.
** Change original engine oil after first 5 hours of operation.
*** More often in hot (over 85° F: 30° C) weather or dusty operating conditions.
**** Some transaxles are sealed units and do not require regular interval fluid changes.
C. MAINTENANCE & ADJUSTMENTS

ENGINE OIL LEVEL

Engine oil level must be checked at regular intervals to ensure that engine oil is maintained at a level that will provide for adequate lubrication of internal components. Operating the engine with insufficient oil in the oil sump will cause engine components to wear prematurely, and prolonged use with low oil levels may cause engine overheating, permanent damage, and voiding of the engine manufacturer’s warranty.

In addition to following the engine manufacturer’s instructions for checking oil level, the recommendations for oil type and viscosity must also be followed. These recommendations vary based on the season during which the unit is being operated, and may require that the oil be changed to suit different operating conditions.

The location of the oil level indicator and oil fill tube are indicated in the engine manufacturer’s manual shipped with each unit. In general, the oil fill tube is marked with an oil can symbol or the word “OIL”, and is located next to the engine to permit easy access (See Figures 1 through 3).

The engine oil fill tube is usually also the location of the engine oil level dipstick, allowing oil level checks and filling to be performed using the same tube.

ENGINE OIL FILTER

The engine oil filter should be changed in accordance with the engine manufacturer’s recommendations, which is generally every 50 hours of operation, or more frequently when operating conditions are hot (over 85°), or dusty.

The oil filter removes abrasive particles and other contaminants from the oil, keeping it clean for maximum lubrication efficiency, and should only be replaced with the type of filter recommended by the engine manufacturer.

The oil filter is located at the base of the engine, and is removed by unscrewing the filter from the filter base using an oil filter wrench (See Figures 1 through 3).

ENGINE AIR FILTER

The engine air filter filters out dust and dirt from the air intake of the engine, and must be cleaned or replaced every 25 hours of operation, or more frequently when operating conditions are dusty.

Follow the engine manufacturer’s recommendations for removal, cleaning, and replacement. See Figures 1 through 3 for air filter locations.
A dirty or clogged filter may cause erratic engine operation, hard starting, or loss of power.

Before removing the hoses from the fuel filter, place a small container under the filter to catch the gasoline in the hoses and filter that will drain out as the filter is removed.

1. Squeeze the tabs on the hose clamps together using a pliers, and slide the clamps away from the fuel filter.
2. Note the fuel flow direction indicated on the filter, and remove the filter by pulling the hoses away from the filter with a twisting motion. Be prepared for fuel in the hoses and fuel filter to drain out as the hoses are disconnected, and catch the fuel in the container.
3. Observing the same fuel filter flow direction noted during removal, install the new fuel filter in the fuel line by sliding the hoses onto the filter.
4. Squeeze the tabs on the hose clamps together, and slide the clamps into place over the fuel filter tubes to secure the fuel lines to the fuel filter.

NOTE: The hose clamps must connect the fuel line hoses to the fuel filter securely to prevent fuel leakage and the possibility of engine compartment fire. Replace the hose clamps if they do not provide a secure, leak-proof attachment to the fuel filter.

NOTE: Replace old, brittle, hard, or cracked fuel line.

The fuel filter is located in the engine compartment and is installed in the rubber fuel line between the fuel tank and the fuel pump (See Figures 1 through 4). The fuel filter should be checked every 100 hours of operation, or sooner and replaced if it appears to be dirty or clogged.
SPARK PLUG

The spark plug(s) should be inspected at the regular intervals specified in the engine manufacturer’s owner’s manual and cleaned or replaced as required. Dirty, worn, or fouled spark plugs may cause hard starting, rough engine operation, or loss of power, and may contribute to premature starter failure from excessive cranking of the engine.

The spark plug(s) can be found by looking for the thick black spark plug cable(s) at the engine head, and removing the spark plug boot(s) that connect(s) the cable to the spark plug.

The spark plug boot can be removed from the spark plug by pulling the boot away from the spark plug with a slight side-to-side motion.

To remove the spark plug(s) from the engine for inspection or replacement:

1. Turn the ignition off and remove the key.
2. Raise the hood.
3. Locate the spark plug cable and boot, and pull the boot off the spark plug (Figure 5).
4. Using a spark plug socket and socket wrench or equivalent spark plug removal tool, unscrew the spark plug from the engine by turning the spark plug counter-clockwise.
5. Inspect the spark plug in accordance with the engine manufacturer’s instructions, and clean, re-gap, or replace the spark plug as required.
6. When reinstalling the spark plug, start the plug into the engine by first turning it clockwise by hand to prevent cross-threading and possible damage to the spark plug port. Tighten as instructed in engine manufacturer’s manual.

BATTERY MAINTENANCE

⚠️ WARNING

Be careful when handling the battery. Avoid spilling electrolyte. Keep flames and sparks away from the battery.

⚠️ WARNING

When removing or installing battery cables, disconnect the negative cable FIRST and reconnect it LAST. If not done in this order, the positive terminal can be shorted to the frame by a tool.

Checking the Battery Fluid

1. Raise the hood.
2. Remove battery filler cap. Fluid must be even with split ring full mark. If not, add distilled water.
3. Reinstall filler cap.

Cleaning the Battery and Cables

1. Disconnect the cables from the battery, negative cable first (B, Figure 6).
2. Remove the battery clamp, then remove the battery.
3. Scrub the battery, cables and battery compartment with baking soda and water.
4. Clean the battery terminals and cable clamps with a wire brush and battery post terminal cleaner.
5. Reinstall battery and clamp.
6. Connect cables, positive cable first.
7. Coat battery cable clamps and battery terminals with a protective anti-corrosive coating such as grease or petroleum jelly.

Figure 5. Typical Spark Plug Location

- A. Spark Plug
- B. Spark Plug Cable & Boot

Figure 6. Battery

- A. Positive Battery Terminal
- B. Negative Battery Terminal
- C. Hold Down Rod
- D. Battery Clamp
MOWER BLADE SERVICE

2. Blades should be sharp and free of nicks and dents. If not, sharpen blades as described in following steps.

3. To remove blade for sharpening, use wooden block to hold blade while removing the blade mounting cap-screw (Figure 7).

4. Use a file to sharpen blade to fine edge. Remove all nicks and dents in blade edge. If blade is severely damaged, it should be replaced.

5. Balance the blade as shown in Figure 8. Center the blades' hole on a nail lubricated with a drop of oil. A balanced blade will remain level.

6. Reinstall each blade with the tabs pointing up toward deck as shown in Figure 9. Secure with a cap-screw (D), cup washer (C) and spline washer (B). Use a wooden block to prevent blade rotation and torque cap-screws to 50-70 ft.lbs. (67-95 N.m.).

WARNING
For your personal safety, do not handle the sharp mower blades with bare hands. Careless or improper handling of blades may result in serious injury.

WARNING
Blade mounting cap-screws must each be installed with a cup washer and spline washer, then securely tightened. Torque blade mounting cap-screw to 50-70 ft.lbs. (67-95 N.m.).
LUBRICATION

Lubricating the Tractor

Lubricate the tractor as shown in Figures 10 through 17. When a grease gun is shown, wipe the fitting clean, apply two or three pumps of lithium base automotive grease, and wipe off excess grease. When an oil can is shown, wipe the area clean, apply a few drops of SAE 30 weight oil, then wipe up drips or spills.

In general, linkage connections and other parts that have partial rotational or sliding movement (pedal pivot points, steering links, etc.) should be lubricated periodically with SAE 30 weight oil. Avoid applying excessive amounts of oil since this may cause a build-up of dirt and grass clippings around the lubricated area, making subsequent lubrication more difficult to accomplish.

Roller bearings, bushings, axles, rotating assemblies with grease fittings, and mechanisms with exposed gear teeth (steering gears) require periodic lubrication with lithium grease.

When grease fittings are present, a manual or pneumatic pressure-feed grease gun should be utilized to inject enough grease through the fitting to fully permeate the enclosed area containing the bearings or other moving parts.

Plain bushings, bearings, axles without grease fittings, and exposed gear teeth require the direct application of grease to all wear surfaces. Use a small, clean applicator brush or other means of applying and spreading the grease evenly.

Special care should be taken with ball and roller bearings to ensure that a liberal application of grease is applied to the bearing rollers or balls, and both inner and outer races or bearing and bearing cups.
Figure 13. Tractor Lubrication Points - Rear Half (Early Hydro, Eaton 750/751)

Figure 14. Tractor Lubrication Points - Rear Half (Later Hydro Models Tuff Torq K60)

Figure 15. Front Axle Lubrication Points

Figure 16. PTO (Electric clutch) Lubrication - Lubricate tab welded to the underside of frame lightly whenever the electric clutch is removed for service, replaced, or when a squeaking sound develops.

Figure 17. Front Wheel Bushing Lubrication - Grease Fitting Location (Inside hub of wheel). Wheel shown removed from axle for visual clarity.
LUBRICATING THE MOWER

Lubricate the mower as shown in Figures 20 through 22. Be sure to include the grease fittings on the mower idler pulley and arbors, which are located underneath the mower deck. Always wipe the grease fittings clean before adding grease to help prevent forcing dirt and other wear-causing contaminants into the lubrication area.

When oil is indicated, use SAE 30 weight oil. Brush any dirt and grass from the area to be lubricated, and wipe lubrication points clean before applying oil. This will ensure that oil can get into the area where it is required.

Avoid getting grease or oil on belts and pulley when applying lubricants, and always wipe away excess oil and grease to prevent a rapid build-up of dirt and debris from accumulating.

TIRE PRESSURE

Front and rear tires should be checked periodically to ensure that proper tire pressure is maintained. Note that these pressures differ slightly from the “Max Inflation” stamped on the side-wall of the tire. Keeping the tires properly inflated to these settings helps provide proper traction, extend tire life, and improved cut quality.

<table>
<thead>
<tr>
<th>Tire</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>12-16 psi (82-103 kPa)</td>
</tr>
<tr>
<td>Rear</td>
<td>6-8 psi (41-55 kPa)</td>
</tr>
</tbody>
</table>
SECTION CONTENTS

Electric Clutch Adjustment ... 4-2
Neutral & Return to Neutral Adjustments
 Hydro-Gear 311-0750 & 0800 Transaxle 4-3
 Eaton 750 Hydrostatic Transaxle
 Early Models w/ Welded Support Bracket 4-5
 Eaton 750 Hydrostatic Transaxle
 Later Models w/ Plastic Support Bracket 4-6
 Eaton 751 Hydrostatic Transaxle 4-7
 Tuff Torq K60 Hydrostatic Transaxle 4-8
 Peerless 801-059B.. 4-9

Clutch / Brake Adjustment
 Hydro-Gear 311-0750 & 311-0800................................... 4-10
 Eaton 750/751 ... 4-10
 Tuff Torq K60 .. 4-11
 Peerless 801 ... 4-11

Purging Air From Transaxle ... 4-12
Steering Gear Adjustment ... 4-12
Mower Adjustments ... 4-13

NOTE: This section contains service information involving minor service procedures and external adjustments that can be performed without requiring extensive disassembly. See the “REPAIR” section for detailed disassembly and repair information.
4 Adjustments
Electric PTO

Electric PTO Clutch Adjustment

Adjustment of the PTO clutch is usually not necessary on new units.

1. Remove key from ignition switch and disconnect spark plug wires to prevent the possibility of accidental starting while the PTO is being adjusted.

2. See Figure 1. Note the position of the 3 adjustment windows (A) in the side of the brake plate, then rotate the pulley so that each of the three rivet joints (visible inside the gap between the pulley and the brake plate) is positioned approximately midway between the three adjustment windows.

3. Insert a .012" feeler gauge through each window, positioning the gauge between the rotor face and the armature face as shown in Figure 2.

4. With all three feeler gauges in place, alternately tighten the adjustment nuts (B, Figure 1) until the rotor face and armature face just contact the gauges.

5. Check the gauges for an equal amount of tension when inserted and removed, and make any necessary adjustments by tightening or loosening the adjustment nuts.

6. Remove the feeler gauges.

NOTE: The actual air gap between the rotor and armature may vary even after performing the adjustment procedure. This is due to dimensional variations on component parts, and is an acceptable condition.

8. Check the mower blade stopping time. The mower blades and mower drive belt should come to a complete stop within five seconds after the electric PTO switch is turned off.

Figure 1. PTO Clutch Adjustment
A. Adjustment Window (Qty. 3, one shown)
B. Adjustment Nut (Qty. 3, two shown)

Figure 2. Feeler Gauge Position
NEUTRAL ADJUSTMENT
Broadmoor (Hydro-Gear 311-0750 and 311-0800 Transaxle Models)

WARNING
When making adjustment, keep hands, hair, clothing, and tools away from rotating belts. Grasp cam lever at base to keep hands several inches below belt rotating around idler pulley assembly. Careless or improper attention may result in serious injury.

Perform the following adjustment if the shift lever must be moved out of the neutral gate to prevent forward or reverse tractor movement. With the clutch/brake pedal released, a small amount of travel in the shift lever may be required to fully stop tractor.

1. Position tractor on flat level ground. Make sure the ground speed control lever is seated securely in the neutral gate.
2. Raise the rear of tractor off the ground. See Elevating Rear End for Safe Service.
3. Loosen nut (A, Figure 3) securing the front shift rod to the idler pivot assembly (B). The carriage bolt must be free to move in the shift rod slot.
4. Start the tractor and rotate the hydro cam lever (C) until rear wheels stop moving. Shut off tractor engine.
5. Tighten nut (A) securely.
6. Check operation of tractor for any movement with shift lever in neutral gate. Perform the return-to-neutral adjustment (refer to the following page).

Figure 3. Neutral Adjustment
A. Nut
B. Idler Pivot Assembly
C. Hydro Cam Lever
RETURN-TO-NEUTRAL ADJUSTMENT

Broadmoor (Hydro-Gear 311-0750 & 0800 Transaxle Models)

Perform the following adjustment if the shift lever does not return to the neutral gate when the clutch/brake pedal is fully depressed.

1. Make sure the Neutral Adjustment is correct (refer to preceding paragraph).
2. Loosen the nut (A, Figure 4) that secures the rear shift rod (B) to the return-to-neutral cam (C).
3. Hold the clutch/brake pedal fully down against the right footrest. Pedal can be clamped in this position with large C-clamp if required. Do not apply parking brake as pedal will not be held against footrest without free play.
4. Rotate the return-to-neutral cam (C) securely against the front clutch rod (D). There should be no gap between the clutch rod and cam.
5. Tighten nut (A) with pedal held down against footrest.
6. Start tractor and check return-to-neutral operation. With pedal released, a small amount of travel in the shift lever may be required to fully stop tractor.
NEUTRAL ADJUSTMENT

LTH/Broadmoor (Eaton 750 Hydrostatic Transaxle - Early Models with Welded Support Bracket “H” - See Figure 5).

NOTE: Perform the Clutch/Brake Adjustment before doing the Neutral Adjustment.

1. Park tractor on level surface. Shut off PTO switch and engine. Do not apply parking brake. Make sure transmission control lever is in neutral and has activated neutral switch light (ignition switch on).

2. Raise the rear of tractor off the ground. See Elevating Rear End for Safe Service.

3. Loosen nut (A, Figure 5), which secures transaxle shift rod to speed control lever, (B).

4. Loosen nut (C), which secures the ball retainer (G) to the welded support bracket.

5. Rotate shift cam (D) so that neutral detent is aligned with roller ball (E).

6. Start engine and increase to full throttle. If wheels rotate, continue with adjustment. If wheels do not rotate, go to step 8.

7. Place a 1/4" rod or #2 Phillips screwdriver into hole (F) in eccentric ball retainer (G). Rotate ball retainer until wheels stop moving.

8. Tighten nut (C) securing ball retainer (G).

9. Make sure dash transmission control lever is in neutral position and has activated neutral switch light (ignition switch) before tightening nut (A).

10. Check the “Return-To-Neutral” by following these steps:
 a. Shift transmission lever into forward (drive) position and fully depress clutch/brake pedal.
 b. Lever should return to neutral slot.
 c. If lever does not return to neutral, repeat above steps 1 - 9.

11. Shut off engine and remove tractor from jackstands.
4 Adjustments
Neutral Adjustment - Eaton

NEUTRAL ADJUSTMENT

Broadmoor (Eaton 750 Hydrostatic Transaxle with Plastic Support Bracket “H” - See Figure 6).

1. Park tractor on level surface. Shut off PTO switch and engine. Do not apply parking brake. Make sure transmission control lever is in neutral and has activated neutral switch light (ignition switch on).

2. Raise rear of tractor off ground with a suitable hoist or floor jack. Install jackstands underneath transaxle and block front wheels.

3. Loosen nuts (A, Figure 6) on both left side and right side of speed control lever (B). (Left side nut is located next to spring and not shown in illustration.)

4. Loosen nut (C) which attaches ball retainer (G) to plastic support bracket (H).

5. Rotate shift cam (D) so that neutral detent is aligned with roller ball (E).

6. Start engine and increase to full throttle. If wheels rotate, continue with adjustment. If wheels do not rotate, go to step 8.

7. Place a 1/4” rod or #2 Phillips screwdriver into hole (F) in eccentric ball retainer (G). Rotate ball retainer until wheels stop moving.

8. Tighten nut (C) securing ball retainer (G).

9. Shut off engine and make sure dash transmission control lever is in neutral position, and has activated neutral light (ignition switch on).

10. Pull right end of speed control lever (B) fully forward. Tighten the left side 1/4” nut (not shown).

11. Push the right end of speed control lever B fully rearward and tighten the right side 5/16” nut (A).

12. Check the “Return-To-Neutral” by following these steps:
 a. Shift transmission lever into forward (drive).
 b. Lever should return to neutral slot.
 c. If lever does not return to neutral, repeat above steps 1 - 11, and make necessary adjustments.
 d. Recheck following steps 12a - 12c.

13. Remove tractor from jackstands.
NEUTRAL ADJUSTMENT

Broadmoor (Eaton 751 Hydrostatic Transaxle)

1. Park Tractor on level surface. Shut off PTO switch and engine, and remove key. Do not apply parking brake. Make sure transmission control lever is in neutral and has activated neutral.

2. Raise the rear of tractor off the ground. See Elevating Rear End for Safe Service.

3. Loosen nuts (A, Figure 7) on both left side and right side of speed control lever (B). (Left side nut is located next to spring and not shown in illustration.)

4. Rotate shift cam (D) so that neutral detent is aligned with roller ball (E).

5. Start engine and increase to full throttle. If wheels rotate, continue with adjustment. If wheels do not rotate, go to step 9.

6. Loosen nut (C) which secures the ball retainer (G) to the plastic support bracket (H).

7. Place a 1/4” rod or #2 Phillips screwdriver into hole (F) in eccentric ball retainer (G). Rotate ball retainer downward (looking from right hand side) until wheels rotate forward. Rotate ball retainer slowly upward (from right hand side) until wheels stop moving.

NOTE: Neutral must be obtained coming from forward.

8. Tighten nut (C) securing ball retainer (G).

9. Shut off engine and make sure dash transmission control lever is in neutral position against rear edge of neutral slot in dash.

10. Pull right end of speed control lever (B) fully forward. Tighten the left side 1/4” nut (not shown).

11. Push the right end of the speed control lever (B) fully rearward, and tighten right side 5/16 nut (A).

12. Start the engine and run at full throttle. Check for neutral by moving the control lever into forward and reverse and back into neutral gate. Control lever can be moved a small amount forward or backward in neutral gate to avoid tractor movement. Continue with adjustments if neutral cannot be obtained.

13. Shut off engine. Loosen 1/4” nut at left hand end of speed control lever. Position transmission control lever out of neutral slot toward reverse to the point where notched out portion of lever is even with rear edge of neutral slot. Pull speed control lever toward right. Retighten 1/4” nut.

14. Repeat step 12.

15. Shut off engine. Loosen 1/4” nut at left hand end of speed control lever. Position transmission control lever out of neutral slot toward reverse to the point where notched out portion of lever is even with rear edge of neutral slot. Pull speed control lever toward right. Retighten 1/4” nut.

16. Repeat step 12.

17. Return-To-Neutral Adjustment is correct when the above adjustment steps are followed.

18. Remove the unit from the jackstands.
Neutral Adjustment - Tuff Torq K60 Hydrostatic Transaxle

NOTE: Perform this adjustment procedure only if tractor moves forward or reverse when ground speed control lever is in neutral gate.

1. Place jackstand under each side of rear drawbar. Adjust jackstand height until rear wheels are off the ground.

2. Hydro transmission has pre-set internal neutral adjustment. If tractor creeps when control lever is in neutral, first loosen nut (A, Figure 8) that attached shift rod lever (B) to shift pivot assembly (C). Directional cam (E) will return to factory pre-set neutral. If wheels continue to move with control lever in neutral, a problem exists with internal adjustment. See the repair section of this manual for detailed service instructions. If wheels do not move, perform the following steps to align cams.

3. Loosen nut (D) securing lever assembly pivot.

4. With nut (A) loosened, make sure ground speed control lever is in neutral slot on dash.

5. Push spring-loaded directional cam (E) side-to-side and allow cam to return-to-neutral.

6. With cam (E) stationary, move shift pivot assembly (C) until 1/4" hole in cam and pivot assembly line up. Insert 1/4" positioning pin F or 1/4" rod through both parts. Cam (E) must remain in neutral position.

7. With positioning pin in place, tighten nut (D), and then tighten nut (A).

8. Remove positioning pin and move ground speed control lever through forward and reverse ranges and return lever to neutral.

9. Check to see if positioning pin can be freely inserted (from bottom side) through directional cam (E), and lever assembly (C). If alignment is good, go to step 10. If pin cannot be inserted, repeat steps 2 - 8.

10. With ground speed control lever in neutral position, start unit (with rear wheels off the ground), and check for wheel movement. Wheels should not move due to internal neutral adjustment. If wheels move, recheck that positioning pin can be inserted freely through directional cam (E) and lever assembly (C) with ground speed control lever in neutral position. If neutral cannot be found, a problem exists with the unit's shift linkages.

11. After neutral adjustment, move the ground speed control lever to forward range and depress the clutch/brake pedal. The control lever should return to the neutral position in dash, and wheels should not move. Move ground speed control lever to reverse range and repeat check. Return-To-Neutral Adjustment is correct when the above adjustment steps are followed.

Figure 8.
A. Nut, 1/4
B. Shift Rod Lever
C. Shift Pivot Assembly
D. Nut, 5/16
E. Cam
F. Positioning Pin
NEUTRAL ADJUSTMENT
Peerless 801-059B

If the tractor moves forward or backward with the transmission control speed lever positioned in the neutral gate, perform the following adjustment.

1. Raise the rear of the tractor off ground with suitable hoist or floor jack. Install jackstands underneath transaxle and block the front wheels.

2. Start the engine and use the transmission control speed lever to find neutral, even if control lever is not in the neutral gate. Shut off engine.

3. See Figure 9. Loosen the nut (A) so that the transmission control rod (B) is free to move.

4. Shift the transmission control lever firmly into the neutral gate on the dashboard. Retighten nut (A).

5. Remove tractor from jackstands.
4 Adjustments
Brake Adjustment

CLUTCH / BRAKE ADJUSTMENT

Brake Spring: Approximate Compressed Spring Length:

- Hydro-Gear 0750/0800: 2-7/8"
- Tuff Torq K60: 2-7/8"
- Eaton 750: 1-3/4"
- Peerless 801: 2-7/8"

Hydro-Gear 311-0750 & 311-0800

1. See figure 10. With parking brake released, rotate the brake cam (A) forward until it stops. There should be 5/16" gap between transaxle housing (B) and rear point of brake cam.

2. If adjustment is required, remove cotter pin (early models had an “elastic nut” instead of a cotter pin) and turn adjusting nut (C) until proper 5/16" clearance is achieved. Turning the nut in will decrease clearance, and turning the nut out will increase clearance. Install cotter pin (or nut) after adjustment.

3. Fully depress the clutch/brake pedal and lock the parking brake by pulling up on the parking brake knob.

4. The brake rod spring (D) should measure 2-7/8" when compressed. Turn the adjustment nut (E) as necessary to obtain correct spring length.

Eaton 750 & 751 Transmission

1. Engage the parking brake.

2. The brake spring should be compressed to a length of 1-3/4". Turn the adjustment nut (A, figure 12) to increase or reduce spring tension until the correct spring length is reached.
Tuff Torq K60 Transmission

1. Engage the parking brake.
2. The brake spring should be compressed to a length of 2-7/8". Turn the adjustment nut (A, Figure 13) to increase or reduce spring tension until correct spring length is reached.

Peerless 801

1. Place the transmission in gear and release the parking brake.
2. See Figure 11. Move the brake rod (A) back and forth to be sure there is no tension on the brake pads.
3. Push the cam lever (B) forward (toward front of tractor) to take out any slack. The gap between lever (B) and stop (C) should be 1/8" (0.3mm). Use a feeler gauge to measure. If adjustment is required, proceed to step 4.
4. Loosen or tighten the adjustment nut (D) to obtain the correct dimension.
5. Fully depress the clutch/brake pedal and lock the parking brake by pulling up on the parking brake knob.
6. The brake rod spring should measure 2-7/8" when compressed. Turn the adjustment nut (E) as necessary to obtain correct spring length.
7. With spring compressed to 2-7/8", adjust set collar (F) 1/4" from brake arm assembly (if present).
PURGING AIR FROM TRANSAXLE

Air may become trapped in the inlet hydraulic filter or closed loop passages of the hydro transaxle during assembly or shipment of the tractor. It is very important for proper operation to release any trapped air that may cause damage to the internal transaxle parts.

1. Park the tractor on a flat, level surface.
2. Place the hydro release lever (A, Figure 14) in the “PUSH” position by pulling rearward on the lever. The lever is located under the rear left-hand corner of the frame.
3. Start the tractor engine and run at a low idle.
4. Move the ground speed control lever from the neutral position to the full forward position for five seconds. Move lever to the full reverse position for five seconds. Repeat this procedure three times in forward and reverse direction.
5. Return the control lever to the neutral gate.
6. Place the hydro release lever (A) in the “DRIVE” position by pushing lever fully forward.
7. Drive the tractor at least five feet in the forward and reverse directions with full throttle and full ground speed. Repeat this procedure three times in the forward and reverse directions.
8. Check oil level (if applicable)

Repeat the above steps if tractor has noisy or erratic operation, lack of performance after transmission warm-up, or oil leakage from the transaxle vent tube.

STEERING GEAR ADJUSTMENT

If there is excessive back-lash in the steering system, the steering gear can be adjusted to the steering shaft gear for better engagement. Refer to Figure 15. Loosen two capscrews (A) and adjust bracket so that gear teeth are more closely meshed. Retighten nuts after adjustment.
MOWER ADJUSTMENT

WARNING
Before checking mower, shut off PTO and engine. Allow all moving parts to stop. Remove ignition key, then disconnect the spark plug wire and fasten it away from the spark plug.

Leveling The Mower

If the cut is uneven, the mower may need leveling. Unequal or improper tire pressure may also cause an uneven cut. Make sure tire pressure is correct as specified in Checking Tire Pressure.

1. With the mower installed, place the tractor on a smooth, level surface such as a concrete floor. Turn the front wheels straight forward.
2. Check for bent blades and replace if necessary.
3. Disengage the PTO. Place the mower in mid-cutting height position. Arrange the mower blades so that they are pointing from side-to-side.
4. Measure the distance between the outside tips of each blade and the ground. If there is more than 1/8" (3mm) difference between the measurements on each side, proceed to step 5. If the difference is 1/8" (3mm) or less, proceed to step 6.
5. See Figure 16. Loosen the outside nut (A). Turn the eccentric nut (B) to raise or lower left-hand side of mower. When mower is level, hold the eccentric nut while tightening the outside nut.

TURBO COLLECTION SYSTEM NOTE:
When using a turbo collection system, raise the discharge side of the mower approximately 1/4" to compensate for turbo assembly weight. Check the level of the cut grass and adjust the 1/4" measurement as necessary for a smooth, even cut.

6. Arrange the blades so they face front-to-back.
7. On 38" deck, measure the distance from the ground to front tip of the right blade and from the ground to the rear tip of the left blade.
On 44" decks, measure the distance from the ground to the front tip of the center blade, and from the ground to rear tips of left-hand and right-hand blades.
Front tips on either deck should be 1/4" higher. If not, proceed with steps 8 - 10.
8. See Figure 17. To raise front of mower deck, loosen front nut (A) and turn rear nut (B) against bracket (C).
9. To lower front of mower deck, loosen rear nut (B) and bracket (C) will move backwards to lengthen rod.
10. Re-check measurement before tightening front nut (A) against bracket.
SECTION CONTENTS

Introduction
- Tools Needed ... 5-2
- System Description ... 5-2

Principals Of Operation
- Ignition System ... 5-2
- Charging System ... 5-2
- Cranking System ... 5-2
- Safety Interlock System .. 5-2
- Operation ... 5-2

Checking Out The System
- General ... 5-3
- Test Series ... 5-3

Lower Wire Harness Explosion Diagram .. 5-4

Upper Wire Harness Explosion Diagram ... 5-6

1. Checking the Power Supply
 - A. Wiring .. 5-8
 - B. Battery Tests .. 5-8
 - C. Battery Cables ... 5-9

2. Isolate Starting and Safety Systems ... 5-10

3. Checking the Cranking System
 - A. Test Circuit Breaker .. 5-10
 - B. Test Power to Ignition Switch 5-11
 - C. Test Ignition Switch .. 5-11
 - D. Test Power to Solenoid ... 5-12
 - E. Test Solenoid .. 5-13
 - F. Solenoid Bench Test .. 5-13
 - G. Test Power To Starter .. 5-14

4. Test Safety Interlock System
 - A. PTO Interlock Switch .. 5-15
 - B. Seat Switch (Mechanical) ... 5-15
 - C. Seat Switch (Electrical) ... 5-16
 - D. Clutch/Brake Switch (Mechanical) 5-16
 - E. Clutch/Brake Switch (Electrical) 5-16
 - F. Neutral Safety Switch (Mechanical) 5-17
 - G. Neutral Safety Switch (Electrical) 5-17
 - H. Interlock Module ... 5-18

5. Misc. Tests
 - A. Headlights .. 5-18
 - B. Power to Headlights ... 5-18
 - C. Headlight Switch ... 5-19
 - D. Hour Meter ... 5-19
 - E. Power to Hour Meter .. 5-20
 - F. Inspect and Replace Dash Lights 5-20
 - G. Test Electric PTO Clutch ... 5-21

6. Wiring Diagrams .. 5-22
INTRODUCTION

Tools Needed
- VOM (Volt-Ohm meter, multi-meter, or equivalent)
- Test Light.
- Jumper wires with clips at both ends.

Electrical System Changes
Early and later model Broadmoors may have different electrical components. However, the basic configurations and troubleshooting procedures given in this section still apply. For instance: If the troubleshooting procedure instructs you to test the clutch / brake pedal switch, and your tractor doesn’t have a clutch / brake pedal switch, simply skip that step.

System Description
The tractor has four basic electrical systems: ignition, charging, cranking, and the safety interlock system.
- The ignition system, contained in the engine, is connected through a harness from the magneto to the ignition switch and interlock module.
- The charging system replenishes lost power to the battery. The alternator supplies power through a wiring harness that is connected to a circuit breaker, and then to the battery.
- The cranking system provides the high energy needed to start the engine. Current is drawn from the battery, through the solenoid, to the starter when the ignition switch is activated.
- The safety interlock system incorporates safety circuits for safe starting, operation, and shutdown under unsafe conditions. It consists of the neutral safety switch, PTO switch, "Operator present" seat switch, clutch/brake switch, and the interlock module.

PRINCIPALS OF OPERATION

Ignition System
When the ignition switch is turned to OFF, the ignition circuit closes and grounds the ignition coil stopping the engine by terminating spark
When the ignition switch is in the RUN position, the ignition circuit is open, allowing the engine to run.

Charging System
While the engine is running, current flows from the alternator through a rectifier to the positive battery post and charges the battery. The circuit breaker, normally closed, opens if the circuit is shorted.

Cranking System
Battery voltage is present at the "B" terminal of the ignition switch at all times (see Figure 8). Turning the ignition switch to START supplies 12 volts to one of the solenoid coil terminals. Current is then passed through the other solenoid coil post to the safety ground circuit. If all safety switches are closed, the solenoid coil is grounded engaging the solenoid and sending power to the starter.
If the PTO, transmission, or clutch/brake pedal is engaged, or if the operator present seat switch is open--the solenoid will not be grounded and the starter will not crank the engine.

Safety Interlock System
The safety system can be divided into two sub-systems. The first grounds the engine ignition module if the operator leaves the seat with the transmission engaged or the PTO engaged.
If the operator leaves the seat, the engine will run only if:
- the PTO is disengaged, AND
- the the parking brake is ON, AND
- the ground speed control lever is in the neutral gate.
The second sub-system prevents the engine from cranking if the operator is not in the seat with the transmission disengaged and the PTO disengaged.
The engine will crank only if:
- the operator is in the seat, AND
- the PTO is disengaged, AND
- the clutch / brake pedal is depressed, AND
- the groundspeed control lever is in the neutral gate.

Operation
If the seat switch system is functioning properly, the following statements are true:
1. The engine will not start unless an operator is in the seat.
2. The engine will stop running if the operator leaves his seat while:
 a.) the parking brake off, or
 b.) the PTO is engaged, or
 c.) the ground speed control lever is outside the neutral gate.
3. If the operator is in the seat, the operator can engage and disengage the transmission and PTO while engine continues to run.
CHECKING OUT THE SYSTEM

General

Both the ignition and charging systems are internal to the tractor engine. Follow the Troubleshooting Guide, Section 2, or refer to your engine manual for information. See an authorized dealer or appropriate service manual for additional engine troubleshooting information.

The cranking and safety start systems have interconnected components. The testing of these components and troubleshooting procedures is covered in detail in this section.

The testing procedures contained in this section are intended to be performed as a series. Skipping a step or leaving it uncompleted can create a dangerous situation and produce incorrect test results.

Unless otherwise instructed, all tests must be performed with the ground speed control lever in the neutral gate with the parking brake engaged, the operator present seat switch activated, and the PTO switch off.

Reattach components after each test and touch only points mentioned in the test procedure to avoid possible damage to testers or components.

Basic Electrical Terms:

“Ground” is the negative battery post or any other conductive part of the frame. For best results, use the negative battery post as ground.

“VOM” is a volt-ohm meter, multi-meter, or equivalent.

“VDC” is volts of direct current or the VOM setting used to measure DC voltage.

“Ohms” are units of resistance or the VOM setting used to measure resistance.

“Continuity” is an continuous, unbroken circuit. In this manual continuity is determined with a VOM set to measure Ohms. Zero Ohms is true continuity. However, due to contact point corrosion and resistance within wires, continuity may measure several Ohms.

“No Continuity” is a broken circuit. In this manual no continuity is determined with a VOM set to measure Ohms. No continuity will register as infinite Ohms.

“Battery Voltage” is the approximate voltage output of the battery. Keep in mind that “battery voltage” tested at any component will be slightly lower than “battery voltage” tested at the battery terminals due to resistance within connections and wires.

Test Series

CHECKING THE POWER SUPPLY
1. Wiring
2. Battery Tests
 • Check fluid level
 • Clean battery and terminals
 • Hydrometer (charge) test
 • Heavy load test
3. Battery Cables

ISOLATE STARTING AND SAFETY SYSTEMS

CHECKING THE CRANKING SYSTEM
1. Test Circuit Breaker
2. Test Power to Ignition Switch
3. Test Ignition Switch
4. Test Power to Solenoid
5. Test Solenoid
6. Solenoid Bench Test
7. Test Power To Starter

TEST SAFETY INTERLOCK SYSTEM
1. PTO Interlock Switch
2. Seat Switch (Mechanical)
3. Seat Switch (Electrical)
4. Clutch/Brake Switch (Mechanical)
5. Clutch/Brake Switch (Electrical)
6. Neutral Safety Switch (Mechanical)
7. Neutral Safety Switch (Electrical)
8. Interlock Module

MISC. TESTS
1. Headlights
2. Power to Headlights
3. Headlight Switch
1. Hour Meter
2. Power to Hour Meter
1. Inspect and replace Dash Lights
1. PTO Clutch
To engine fuel shut-off, Briggs & Stratton Vanguard only (not used on single cylinder engines).

Ground to R.H. front engine mounting bolt

Electric Clutch

Location of engine kill wire on twin cylinder Briggs & Stratton models only

Location of engine kill wire on single cylinder Briggs & Stratton models only

To oil pressure sending unit, Briggs & Stratton models only.

To oil pressure sending unit, Kohler units only.

NOTE: Unless noted otherwise, use the standard hardware torque specification chart. See Table of Contents.

Figure 1. Lower Wiring Harness
LOWER WIRING HARNESS

<table>
<thead>
<tr>
<th>REF. NO.</th>
<th>QTY.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>WIRE ASSY., Headlight</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>SOCKET, Bulb</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>BULB, Headlight, 12.8V</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>TIE, Cable</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>BUSHING, Snap, Small</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>LENS, Headlight</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>BEZEL, Headlight</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>HEADLIGHT ASSY. (Incl. Ref. Nos. 2, 3, 6, 7 & 9)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>HEAT SHIELD</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>HARNESS ASSY., Lower (14, 15 & 16 HP Briggs & Stratton)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>WIRE ASSY., Seat Switch</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>HARNESS ASSY., Lower (14 & 15 HP Kohler)</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>BUSHING, Snap, Large (14 & 15 HP Kohler only)</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>WIRE ASSY., Engine Ground</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>SWITCH, Seat, Operator Present</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>WIRE ASSY., Jumper (15 HP Briggs & Stratton only)</td>
</tr>
</tbody>
</table>
5 Electrical Troubleshooting
Main Wiring Harness

Figure 2. Main Wiring Harness

NOTE: Unless noted otherwise, use the standard hardware torque specification chart. See Table of Contents.
MAIN WIRING HARNESS

<table>
<thead>
<tr>
<th>REF. NO.</th>
<th>QTY.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>COVER, Terminal</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>CABLE, Battery to Solenoid</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>HOSE, Battery, Drain</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>WIRE ASSY.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>CIRCUIT BREAKER</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>CABLE, Solenoid to Starter</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>HOLD DOWN, Battery</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>BULB, Indicator Light (Qty. 4 used on 15 HP models)</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>BOOT, Insulator</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>BATTERY</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>SOLENOID</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>IGNITION SWITCH ASSY. (Incl. Ref. Nos. 25, 26 & 35)</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>SWITCH, Transmission, Neutral Start</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>SWITCH, Headlight</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>MODULE</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>TRAY, Battery</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>NUT, Plastic, 1/4-20</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>SWITCH, Interlock, Clutch / Brake Pedal</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>STRAP, Wire Retainer</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>ROD, Battery Hold Down</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>WIRE ASSY.</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>CABLE, Battery to Ground</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>SWITCH, PTO Electric Clutch</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>HARNESS, Upper</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>KEY, Ignition</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>NUT</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>NUT, Hex, Full, 1/4-20 (15 HP models only)</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>LOCKWASHER, 1/4</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>LOCKWASHER, 5/16</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>NUT, Hex, 5/16-24</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>WASHER, Plain, 9/32</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>CAPSCREW, Hex, 1/4-20 x 3/4</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>SCREW, Plastite, #8-16 x 1/2</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>SCREW, Plastite, 1/4-20 x 1/2</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>LOCKWASHER, Internal Tooth, 5/8</td>
</tr>
</tbody>
</table>
1. CHECKING THE POWER SUPPLY

A. Check Wiring Condition and Tightness
1. Check all wires for cracked or worn insulation.
2. Check all connectors, terminals, and receptacles for looseness or corrosion. See Figures 1 and 2.

B. Battery Tests

GENERAL
If the battery is producing 12 volts and the battery cables have continuity, the rest of the cranking system can be systematically tested. However, a full test of the battery includes cleaning, testing battery charge (hydrometer test) and testing its ability to deliver current (heavy load test).

NOTE: Before testing, check the battery for any damage such as a loose post or cracks. Damaged batteries must be replaced.

CHECK ELECTROLYTE LEVEL
1. Remove the battery vent cap/caps and make sure the breather holes are open.
2. Check that fluid is even with the bottom of the split rings (see Figure 3). If not, fill with distilled water.

TEST BATTERY VOLTAGE
1. Test the battery voltage: set VOM to VDC.
2. Place one test probe of the VOM on the battery’s positive post and one probe on the negative post. Note and record the battery voltage as it will be referenced in later tests.

HEAVY LOAD TEST
1. Follow the load tester manufacturer’s instructions; connect the battery tester to the battery.
2. Discharge the battery under a fixed load at three times the ampere-hour rating for approximately 15 seconds, then read the terminal voltage.
HYDROMETER TEST

1. Check each cell using a hydrometer.

All cells should have a specific gravity of 1.27 or better. If the cells vary by more than .050 points, charge the battery and recheck.

If one or more cells reads below 1.265 charge at 5 Amps checking hourly. If the low cell or cells do not improve within 3 hours of charging, replace the battery.

CLEAN BATTERY

1. Disconnect the negative battery cable, then the positive. See Figure 4.

2. Remove the battery from the battery compartment.

3. Replace the vent cap and remove dirt and corrosion with a solution of 1 part baking soda and 7 parts water.

4. Clean the posts with a wire brush until the metal is shiny.

5. After the battery is reinstalled coat the terminals with petroleum jelly to prevent corrosion.

C. Clean and Test Battery Cables

NOTE: Be sure to label record where and to which posts each cable is connected.

1. Remove the negative battery cable from the battery and from the ground. Clean the cable terminals and the engine ground with a wire brush until the metal is shiny.

2. Remove the positive cable from the battery and solenoid. Clean the terminals and solenoid post with a wire brush until the metal is shiny.

3. Remove the cable going from the solenoid to the starter. Clean the cable terminals, solenoid post, and starter post with a wire brush until the metal is shiny.

4. Clean the terminal connecting the circuit breaker to the solenoid.

5. Set the VOM to Ohms and check the cables for continuity. Replace any cable that has more than 2 Ohms of resistance or is damaged in any way.

6. Reconnect all cables and terminals to their original connections.
2. ISOLATE CRANKING AND SAFETY SYSTEMS

1. Disconnect the spark plug wire(s) from the spark plug(s) to prevent accidental starting.
2. Remove the black/yellow and green/black connector (A, Figure 6) from the small solenoid post.
3. Connect a jumper lead from the small solenoid post to good ground.
4. With an operator in the seat, the PTO switch off, the parking brake engaged, and the ground speed control lever in the neutral gate, attempt to crank the engine.
 a.) If the starter turns the engine over, proceed to part 4 TESTING THE SAFETY INTERLOCK SYSTEM.
 b.) If the starter does not turn the engine over, proceed to part 3 TESTING THE CRANKING SYSTEM.
5. Remove the jumper and reconnect the black/yellow and green/black connector to the solenoid.

3. TESTING THE CRANKING SYSTEM

For the following tests it is assumed that the battery is fully charged and all connections and wires are good.

A. Test Circuit Breaker

The circuit breaker (A, Figure 7) is connected to the positive post of the battery through the positive battery cable connected at the large post of the solenoid.

1. Set the VOM to VDC.
2. With the negative probe, touch ground.
3. Touch the positive probe to one post of the circuit breaker, and then, the other. Both posts should have close to full battery voltage going to them. If not, replace the breaker.
4. Set VOM to Ohms.
5. See Figure 8. Probe both circuit breaker terminals. If the VOM reads 5 Ohms or more, replace the circuit breaker.
B. Test Power to Ignition Switch
1. Pull plug off ignition switch.
2. Set VOM to VDC
3. Probe ground. Probe the "B" receptacle (see Figure 9) on the ignition switch plug. The VOM should show battery voltage. If not, check the battery, circuit breaker, and all connections.
4. Reinstall the ignition plug.

C. Test Ignition Switch
1. Remove the plug from the ignition switch.
2. Remove the ignition switch from the dash board.
3. Set VOM to Ohms.
4. With key switch in the OFF position connect test leads to terminals G and M. There should be a reading of 0.3-3 (continuity) on multi-meter.
5. Check all other connection combinations for no continuity. G to M should be the only combination that has continuity; all other connection combinations should have no continuity.
6. With the key switch in the RUN position, connect the VOM to terminal B and terminal L. There should be a reading of 0.3-3 Ohms (continuity) on the VOM.
7. Check all other connection combinations for no continuity. B to L should be the only combination that has continuity; all other connection combinations should have no continuity.
8. Hold switch in START position. Test the following connections for continuity: B to L, B to S, L to S. There should be a reading of 0.3-1.0 ohms (continuity) on the multi-meter (see Figures 12-14).

9. Check all other connection combinations for no continuity. B to L, B to S, and L to S should be the only combinations that have continuity; all other connection combinations should have no continuity. Replace a switch that does not meet all of the above test results.

10. Reinstall the ignition switch and reattach the plug.

D. Test Power to Solenoid

1. Unplug the blue / white wire (A, Figure 15) from solenoid post 1 (see Figure 15).

2. Probe ground. Probe the blue / white wire plug.

3. Turn the ignition switch to START. The VOM should show battery voltage. If not, recheck the key switch, circuit breaker, and all connections.
E. Test Solenoid

For this, and all tests, the ground speed control lever must be in neutral, the parking brake set, and the PTO switch must be OFF. Unplug and secure all spark plug wires. Read completely through the instructions before performing this and all tests.

1. Disconnect the Green/Black & Black/Yellow plug (A, Figure 16) and Blue/White plug (B, Figure 16) from the small posts of the solenoid.

2. Connect a jumper lead from one small post to ground.

3. Connect a jumper lead to the other small post and then touch it to the positive battery post. The lead may arch to the battery post—this is normal.

There should be a single audible “click” heard as the solenoid engages and the engine should turn over. If no click is heard, proceed to SOLENOID BENCH TEST. If the solenoid clicks but the starter does not turn the engine over, check the starter cable and the starter itself. If the solenoid “clicks” rapidly or repeatedly, recheck the battery and all connections for corrosion.

F. Solenoid Bench Test

Replace a solenoid that does not pass all of the following tests.

1. Identify and remove all wires from the solenoid. Remove the solenoid.

2. Set the VOM to the Ohms setting. Probe the small posts of the solenoid (Figure 17). The VOM should read less than 10 Ohms.

3. Connect the VOM probes to the large posts (Figure 18). The meter should read no continuity.
4. Probe the mounting base of the solenoid. Probe small post #1 and observe the VOM. Probe post #2 and observe the VOM. The VOM should read no continuity in both cases.

5. Apply 12 VDC to the two small posts. There should be an audible click as the solenoid engages.

6. With the solenoid engaged (12 VDC to the small posts), measure the resistance at the two large posts. The VOM should read less than 10 ohms (continuity).

7. Correctly reinstall the solenoid and all related wires and connectors.

G. Test Power to Starter

For this, and all tests, the ground speed control lever must be in the neutral gate, the parking brake set, and the PTO switch must be OFF. Unplug and secure all spark plug wires.

1. Set VOM to VDC.
2. Probe ground. Pull the boot back and probe the starter post (see Figure 21).
3. Turn the ignition switch to start. The VOM should read battery voltage.
4. TESTING THE SAFETY INTERLOCK SYSTEM

A. Test PTO Interlock Switch

When a switch is replaced, test the new switch to make sure it works correctly.

1. Turn the PTO switch (A, Figure 22) OFF.
2. Remove the PTO switch wire harness plug.
3. Set VOM to Ohms (). Touch one probe to each of the back row of terminals. The VOM should show no continuity. (Terminals closer together)
4. Touch one probe to each of the front row of terminals. The VOM should show continuity (Terminals further apart)
5. Move PTO switch to the ON position.
6. Touch one probe to each of the back row of terminals. The VOM should show continuity
7. Touch one probe to each of the front row of terminals. The VOM should show no continuity.

B. Test Seat Switch (Mechanical)

1. Tilt the seat forward and rest it against the steering wheel. The switch button should not be depressed.
2. Tilt the seat down to operating position and have someone sit in the seat. The weight of the operator should depress the switch button.
C. Test Seat Switch (Electrical)
1. Raise seat and disconnect the harness plug.
2. Set VOM to Ohms.
3. Connect probes to seat switch terminals. The VOM should read no continuity.
4. Depress seat switch. The meter should show continuity.

D. Test Clutch / Brake Interlock Switch (Mechanical, Later Models Only)
1. Release the parking brake.
2. Check the clutch / brake switch. The switch button should not be depressed.
3. Set the parking brake.
4. Check the clutch / brake switch. The switch button should be depressed.

E. Test Clutch / Brake Interlock Switch (Electrical, Later Models Only)
1. Release the parking brake.
2. Remove the plug from the clutch/brake pedal interlock switch.
3. Set the VOM to Ohms and probe the terminals of the switch. It should read no continuity.
4. Set the parking brake. The VOM should show continuity.
F. Test Neutral Safety Switch (Mechanical)

NOTE: When a switch is replaced, test the new switch to make sure it works correctly.

1. Move ground speed control lever out of the neutral gate.
2. Move ground speed control lever slowly back into the neutral position while observing switch through the dashboard. The lever should depress the switch when in the neutral gate.

G. Test Neutral Safety Switch (Electrical)

NOTE: When a switch is replaced, test the new switch to make sure it works properly.

NOTE: The neutral safety switch is located under the dashboard and may be easier to test if removed. Use a 1/4" drive ratchet, a 1" extension, and 1/4" shallow socket to remove the two plastite screws that secure the switch to the dashboard.

1. Remove the wire harness plug.
2. Place the ground speed control lever in neutral (depress the switch).

3. Set the VOM to Ohms. Touch one probe to each of the top row terminals and then the bottom row terminals as shown. With the ground speed control lever in neutral (switch depressed) both rows should have continuity.

4. Move the ground speed control lever out of neutral (switch not depressed).
5. Touch one probe to each of the top row terminals and then the bottom row terminals as shown in Figure 33. With the ground speed control lever in forward (switch not depressed) both rows should have no continuity.
H. Interlock Module

If all other switches, connectors, wires, and cables have tested OK, the interlock module is at fault and must be removed and replaced. The module is not testable. However, if available, a known-good module can be used to test the system.

1. Unplug and remove the old module (A, Figure 34).
2. Substitute the know-good module for the old module.
3. Turn the ignition switch to START. If the engine turns over, the old module is bad and must be replaced.

5. MISCELLANEOUS TESTS

A. Test Headlight Bulbs

1. Remove the headlights from the headlight assembly by twisting the socket counterclockwise and pulling it out of the reflector assembly.
2. Visually inspect the bulb. If the element is burned out, replace the bulb.

B. Test Power to Headlight Circuit

1. Turn the ignition switch to ON (RUN) and the headlight switch OFF.
2. Set VOM to VDC. Touch the negative probe to ground. Use the positive probe to probe the white/black wire of the headlight switch plug (see Figure 36). The VOM should read battery voltage. If not, check the ignition switch and all connections and wires.
3. Turn the headlight switch ON.
4. Probe ground and the white/green plug on the back of the switch. The VOM should read battery voltage. If not, check the headlight switch (see TEST HEADLIGHT SWITCH).
5. Keep the headlight switch ON. Probe ground and probe the terminal at the headlight connection. The VOM should read battery voltage. If not, check the switch and the continuity of all wires and connectors.

C. Test Headlight Switch
1. Remove the plugs from the headlight switch.
2. Set the VOM to Ohms.
3. With the switch OFF probe both terminals. The VOM should read no continuity.
4. Turn the switch to ON. The VOM should read continuity.

D. Test Hour Meter (Where Applicable)
The hour meter (A, Figure 39) can be easily tested by turning the ignition switch to RUN and observing the meter. The meter should register the passage of time.
5 Electrical Troubleshooting
Hour Meter / Dash Light Tests

E. Test Power to Hour Meter (Where Applicable)
1. Turn the ignition switch to RUN.
2. Set VOM to VDC.
3. Probe ground. Probe the white/blue wire at the hour meter terminal. The VOM should read battery voltage. If not, check the key switch and all wires and connections.
4. Probe ground. Probe the blue/white wire at the hour meter terminal. The VOM should read battery voltage. If not, check the ignition switch, all wires and connections, and the hour meter.

F. Inspect and Replace Dash Lights
1. Open the hood.
2. Remove the dash lights (A, Figure 41) by twisting the socket counterclockwise and pulling it out of the dash assembly.
3. Visually inspect the bulb and replace if burned out.
G. Test Electric PTO Clutch

TEST PTO CLUTCH RESISTANCE
1. Set VOM to Ohms.
2. Unplug the PTO clutch connector.
3. Probe PTO clutch connector terminals.
The VOM should read approximately 2-3 Ohms. If the clutch has more resistance than 3 Ohms, replace the field assembly or clutch assembly.

TEST ELECTRIC PTO CLUTCH FOR SHORT CIRCUITS
1. Set VOM to Ohms.
2. Probe the clutch body with the negative test lead.
3. Probe one of the connector terminals with the positive lead. The VOM should show no continuity.
4. Probe the other connector terminal with the positive lead. Again, the VOM should show no continuity.
If the VOM shows continuity to the clutch body from either terminal, the clutch has an internal short and should be replaced.

TEST ELECTRIC PTO CLUTCH ENGAGING
1. Connect the PTO clutch terminals to a 12 VDC power supply.
An audible “click” should be heard as the clutch engages. If the clutch does not engage, replace the field assembly or clutch assembly.
Reconnect the clutch wire connector after testing.
SECTION CONTENTS

6A. Steering & Front Wheel Repair
General... 6-2
Elevating Front of Unit For Safe Service.......................... 6-2
Front Wheel Repair.. 6-4
LH Spindle Repair ... 6-6
RH Spindel / Steering Arm Repair................................. 6-8
Tie Rod Repair... 6-10
Steering Wheel Removal... 6-12
Steering Shaft Removal.. 6-13
Steering Gear / Pitman Arm Service.............................. 6-14
Drag Link Removal.. 6-15

6B. Hand Controls Repair
General... 6-17
Parking Brake Rod.. 6-20
Parking / Shift Knob Removal... 6-20
Shift Lever Assm. Service... 6-21
Lift Lever Assm. Service.. 6-28
Choke Control Service... 6-29
Throttle Control Service.. 6-31

6C. Foot Controls Repair
General... 6-33
Clutch / Brake Pedal Arm Assm. Service........................ 6-35
Clutch Rod Service.. 6-36
Idler Arm Assm. Service.. 6-40
Lockout Lever Assm. Service.. 6-41
Shift Lever Pivot Assm. Service.................................... 6-42
Rod Guide / Brake Rod Service...................................... 6-46

6D. Hood, Grille & Dash Repair
General... 6-51
Hood & Grille Removal.. 6-51
Dash Removal... 6-53

6E. Seat, Deck & Fuel Tank Repair
Seat Removal... 6-59
Seat Deck Removal.. 6-60
Fuel Tank Removal.. 6-60

6F. Rear Wheel Repair
General... 6-61
Elevating Rear End For Safe Service.............................. 6-62
Rear Wheel Removal.. 6-62
DANGER
PREVENT SERIOUS INJURY OR DEATH FROM FALLING UNIT
Always use a properly working lifting device with a capacity suitable for the weight of the unit being serviced.
Always use a jack stand to support the unit while performing service, and chock remaining wheels to prevent the unit from rolling off the supports.
Never work under or around an elevated unit that is not properly supported and secured in position with wheel chocks.

GENERAL
Servicing the lower steering mechanism and front wheel spindles should be performed with the front end of the unit elevated and supported evenly on both sides with jackstands.
Although service can be performed with the mowing deck and hood assembly on the unit, removing the deck and hood assembly provides clear access to all lower steering mechanism components and helps simplify the job.

REQUIRED TOOLS & EQUIPMENT
Tools required for performing disassembly and assembly in these areas include:
- socket wrench set
- open end wrench set
- Flat blade screwdriver
- Metal striking hammer
- Claw hammer, or pry bar
- Center punch or carbide scribe
- Torque wrench (0 - 75 ft. lbs.)

Specialized equipment required for servicing these areas include:
- Jackstands (2)
- Scissor jack or hydraulic jack
- Wheel blocks (2)
- Grease gun w/Lithium-base automotive grease
- Oil can (use SAE 30 weight oil)

ELEVATING FRONT OF UNIT FOR SAFE SERVICE
1. Remove the ignition key, and disconnect the spark plug wire to prevent accidental starting while working on unit.
3. Remove the hood assembly as described in Section 6D. Hood, Grille & Dash Repair.
4. Engage parking brake, block the rear wheels, and using a hydraulic or scissors jack positioned at the center of the front axle assembly, carefully jack the unit up until the front tires are approximately 1” - 2” off the ground (Figure A–1-1).

NOTE: For overall unit stability during service, do not jack front end higher than required for adequate access to steering and spindle components. Excessive elevation may result in fuel leakage from gas tank or electrolyte leakage from battery vents.
5. Position jackstands at each end of front axle assembly and lower the unit slowly until jack stands fully support unit. Make sure the jackstands engage the bottom of the front axle assembly so that weight is evenly distributed on each of the jackstands.
6. Check the rear wheel blocks and make sure that they are tight against the rear wheels to prevent rolling.

DANGER
Do not begin work on the unit unless it is stable and you are sure wheels are chock to prevent rolling.
6 General Repair

6A Steering & Front Wheel Repair

Figure A–2. Front Wheel Assembly

A. Valve Stem & Cap
B. Grease Fitting
C. Ring
D. Tube
E. Cap*
F. Retainer*
G. Tire
H. Bearing (See Inset)
I. Wheel
J. Washer
K. Hubcap**

* AGCO Allis, Massey Ferguson
** Later Simplicity models

"H" - Later Models

"H" - Early Models

Grease front wheel assemblies

* AGCO Allis, Massey Ferguson & early Simplicity models
** Later Simplicity models
Front Wheel Repair

BROADMOOR MODELS

NOTE: Illustrations show AGCO Allis, Massey-Ferguson, and earlier Simplicity model style of hubcap and hardware. Later model Simplicity units have a large snap-on hubcap cover that must be removed for access to the wheel retaining ring.

1. Using a flat blade screwdriver, pop off the plastic hub cap to gain access to the retaining ring.

2. Insert the tip of the flat blade screwdriver into the area at the open end of the retaining ring, and twist the blade against the retaining ring to force the retaining ring out of the groove (Figure A–3).

3. With the retaining ring partially out of the groove, insert the blade tip between the retaining ring and spindle shaft, and pop the retaining ring out of the groove.

4. Slide the wheel off the spindle shaft (Figure A–4). Note that the tire air valve and axle grease fitting are located on the inside of the wheel.

5. Removal of the wheel provides an opportunity to inspect the inside of the tire for sidewall damage, as well as to check inflation pressure. Also, visually check wheel bushings for wear or damage before reinstalling the wheel on the unit, and replace as required. Wheel bushings are pressed into the wheel hub with a press fit and may be removed by pressing or driving out. Align the flat on the bushing with the grease fitting before pressing in the bushing. When installing new bushings, measure the I.D. of the wheel hub to determine the correct bearing O.D. size. See inset illustration in Figure A–2 for sizes.
STEERING GROUP ASSEMBLIES

Figure A–5. Broadmoor Steering Group - Typical Assembly
(Frame & Dash Shown For Component Position Reference)
LOWER STEERING GROUP

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Clip Ring, 5/8</td>
</tr>
<tr>
<td>B.</td>
<td>Washer</td>
</tr>
<tr>
<td>C.</td>
<td>Capscrew</td>
</tr>
<tr>
<td>D.</td>
<td>Spacer</td>
</tr>
<tr>
<td>E.</td>
<td>Rod End</td>
</tr>
<tr>
<td>F.</td>
<td>Washer</td>
</tr>
<tr>
<td>G.</td>
<td>Nut, Flange, 3/8-16</td>
</tr>
<tr>
<td>H.</td>
<td>Jam Nut, 1/2-20</td>
</tr>
<tr>
<td>I.</td>
<td>Drag Link</td>
</tr>
<tr>
<td>J.</td>
<td>Washer, 49/64</td>
</tr>
<tr>
<td>K.</td>
<td>Spindle Assy.</td>
</tr>
<tr>
<td>L.</td>
<td>Tie Rod</td>
</tr>
<tr>
<td>M.</td>
<td>Carriage Bolt</td>
</tr>
<tr>
<td>N.</td>
<td>Spacer</td>
</tr>
<tr>
<td>O.</td>
<td>Arm Assy.</td>
</tr>
<tr>
<td>P.</td>
<td>Nut, Flange Lock, 3/8-16</td>
</tr>
<tr>
<td>Q.</td>
<td>Steering Arm Assy.</td>
</tr>
</tbody>
</table>

EARLY STYLE DRAG LINK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S.</td>
<td>Nut</td>
</tr>
<tr>
<td>T.</td>
<td>Ball Joint Assy.</td>
</tr>
<tr>
<td>U.</td>
<td>Nut</td>
</tr>
<tr>
<td>V.</td>
<td>Drag Link</td>
</tr>
</tbody>
</table>

EARLY STYLE SPINDLE ASSY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W.</td>
<td>Key, Hi Pro</td>
</tr>
<tr>
<td>X.</td>
<td>Set Screw, Sq. Hd.</td>
</tr>
</tbody>
</table>

NOTE: To index steering wheel, loosen nuts (H), adjust drag link (I) so that full left hand turn and full right hand turn have equal play (full turn must hit spindle stop). Torque nuts to 13 ft. lbs.

![Figure A–6. Lower Steering Assembly](image1)

LH Spindle Repair

1. Remove the wheels as described previously under Front Wheel Repair.

2. Using a flat blade screwdriver, position the tip of the screwdriver blade at the open end of the steering arm clip ring, and twist the blade against the clip ring to force the ring partially out of the groove (Figure A–7).

3. Insert the tip of the screwdriver blade in the gap between the inside edge of the clip ring and the spindle shaft, and pop the clip ring completely out of the groove.

![Figure A–7. Remove Clip Ring](image2)
4. Using a 9/16" socket and 9/16" open end or box wrench, remove the capscrew/washer and flanged hex nut that secure the steering arm assembly to the rod end (Figure A–8).

NOTE: A spacer is located over the capscrew threads in the rod opening to permit rotation of the steering arm. Damage to the spacer or washer caused by excessive tightening or wear may adversely affect steering, so be sure to inspect these parts and replace them if necessary before reassembly.

5. The rod end is screwed onto the drag link arm and is secured in place with a 1/2-20 jam nut.

6. Inspect the rod end for free movement/rotation of the rod end bearing, and replace the rod end if necessary (Figure A–9).

7. To remove the rod end, loosen the jam nut by turning it clockwise (looking at the end of the drag link shaft) one or two turns with a 3/4" open-end wrench, and then unscrew the rod end by turning it counter-clockwise.

NOTE: When reinstalling the rod end, be sure to adjust the length of the drag link arm so that the left and right spindle stops stop against the axle assembly with full left and right turns respectively. See the adjustment procedures section for complete details.

8. Tap the left hand steering arm assembly up off the spindle shaft with a hammer to remove it from the axle/spindle shaft assembly.

NOTE: It will be helpful to mark the relative positions of the steering arm, splined spindle shaft, and shaft housing with punch marks to simplify realignment later (See Figure A–10).

9. Tap the top of the splined spindle shaft down with a few light hammer blows, and remove the spindle shaft from the bottom of the axle assembly housing, noting alignment.

10. With the spindle shaft removed, the bushings can be removed and inspected for signs of wear (Figure A–10). Use a brass drift or punch to tap out the bushings from opposite ends of the housing. Replace the bushings if worn, scored, or cracked.
RH Spindle/Steering Arm Repair

1. Remove right front wheel using same procedure as used for left front wheel. (Figure A–11)

2. Use a center punch to mark the relative assembled positions of the right hand steering arm, right hand spindle assembly, and the right side of the front axle assembly (Figure A–11 and A–12).

3. Remove the hex nut and carriage bolt securing the right hand steering arm to the tie rod (Figure A–12).

4. Using a flat blade screwdriver, position the tip of the screwdriver blade at the open end of the steering arm clip ring, and twist the blade against the clip ring to force the ring partially out of the groove (Figure A–13).

5. Insert the tip of the screwdriver blade in the gap between the inside edge of the clip ring and the spindle shaft, and pop the clip ring completely out of the groove.

6. Slide the right hand spindle assembly straight down to remove it from the front axle assembly. Inspect parts and replace as required. Grease spindle bushings as described earlier in left side disassembly instructions.
Reassembly

1. Reassemble parts in the reverse order of disassembly, using particular care to realign the steering arm assembly, spindle assembly, and axle housing.

2. Observe torque specifications on Figure A–6.

 NOTE: If alignment marks are obscured during service or if parts are replaced, proper steering alignment can be performed later with wheels installed using the distance between tires as a guide. The distance between tires at the front should be 1/8" less than the distance between tires at the rear (measured at the outer edge of the tire tread) when the wheels are pointed straight ahead. This slight toe-in is permanently set by the tie rod, and is not adjustable.

3. Before reassembling rod end hardware to left hand steering arm, squirt a few drops of SAE 30 weight oil on the outer surface of the spacer (Figure A–14).

4. Before reinstalling the wheel and related hardware, grease the spindle bushings using the grease fitting on the front axle assembly (Figure A–15). Use a lithium-base, automotive-quality grease such as that provided with the optional Grease Gun Kit.
Tie Rod Repair

1. The tie rod can be removed by disassembling the flanged hex lock nuts and carriage bolts that secure the tie rod to the left and right steering arm assemblies (Figure A–16). Use care when removing the hardware to prevent the internal spacers from falling out.

2. Check the spacer for signs of excessive wear, damage, or flattening due to over-tightening of the assembly hardware, and replace if required. (The spacer allows the steering arms to pivot freely at the tie rod joint.)

3. Check the tie rod for cracks or other damage at the rod ends, and replace if necessary. Also the center portion of the tie rod must be straight to provide the correct center-to-center distance for wheel alignment. If the tie rod is bent, replace the tie rod.

4. Reassemble the tie rod to the steering arms using new spacers or hardware if required. Before installing the flanged lock nut, squirt a few drops of SAE 30 weight oil around the spacer (Figure A–17).

5. Tighten the lock nut securely, but do not over-tighten as this will damage the spacer and may prevent free rotation of the steering arms.
UPPER STEERING GROUP ASSEMBLY

Early models used a cap screw, washer & nut in place of a roll pin (C).

NOTE 4
(gear teeth)

Apply Loctite #271. Torque to 20-30 ft.lbs.

Torque to 17-23 ft.lbs. (2 places)

To Rod End - See Figure 4A–8

Figure A–18. Upper Steering Assembly

A. Cap
B. Steering Wheel
C. Pin, 5/16 x 2
D. Tube
E. Steering Shaft
F. Cotter Pin
G. Washer, 49/64
H. Washer
I. Carriage Bolt, 3/8-16 x 1
J. Nut, Flange Lock, 3/8-16
K. Bushing
L. Capscrew, 5/16-18 x 1-1/2
M. Spacer
N. Nut, 5/16-18
O. Capscrew, 3/8-16 x 1-3/8
P. Pitman Arm
Q. Key
R. Screw, Taptite, 5/16-18 x 1
S. Sector Mounting Plate
T. Steering Gear Assy. Hub
U. Square Head Set Screw

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol: 💧
3. Oil locations indicated by oil can symbol: 🥤
4. Pitman arm shaft (P) should protrude 9/16" above top of steering gear assembly hub (T).
Steering Wheel Removal

EARLIER MODELS

1A. Remove the steering wheel by disassembling the hex head bolt and hex nut that secure the steering wheel to the steering shaft assembly (Figure A–19).

CURRENT MODELS

1B. Later-model steering wheels are attached to the steering shaft assembly with a long spring pin. Use a pin punch and hammer to drive the spring pin out of the steering wheel and steering shaft assembly (Figure A–20).

2. Slide steering wheel up to remove from steering shaft assembly, and note positioning of mounting holes for later reassembly (Figure A–21).

3. Inspect steering wheel and hardware for wear or damage, and replace as required. Reassemble steering wheel to steering shaft assembly, or proceed to next step if steering shaft is to be serviced.
Steering Shaft Removal

NOTE: Unit must eventually be tipped up to remove the shaft.

1. Remove the steering wheel as shown in the steering wheel removal section.

2. Remove the cotter pin from the steering shaft (A, Figure A–22) just above bushing in the frame support.

3. Locate the washers that were held in place by the cotter pin. Slide the washers off the shaft.

4. Loosen the nuts securing the steering mounting plate (A, Figure A–23).

5. Slide the steering shaft assembly down and out of the bottom of the unit to remove for replacement. Note: Unit must be tipped up at this point to remove the shaft.

6. Inspect steering shaft assembly and bushings for excessive wear or damage. Replace if required.

7. Install the steering shaft assembly in the reverse order of removal and apply a liberal coating of grease to the steering shaft and drive gear.

Figure A–22. Remove Cotter Pin
A. Cotter Pin

Figure A–23. Steering Mounting Plate
A. Nuts
Steering Gear / Pitman Steering Arm Service

1. Tilt the unit up or place on an elevated work stand for access to the underside of the frame.

2. Disassemble the drag link from the pitman arm by removing the capscrew, washers, spacer, and flanged hex lock nut (Figure A–24).

3. Remove taptite hex head capscrews that secure pitman steering arm/assembly to underside of unit (Figure A–25).

4. Turn the steering arm assembly mounting plate 90° to allow the assembly to be removed as a unit. Pull the assembly straight out. See Figure A–26.

5. The steering arm assembly may be disassembled by removing the the two square head bolts (U, Figure A–18) from the gear assembly.

6. Inspect all parts for excessive wear or damage and replace as required.

7. Reassemble in reverse order of disassembly. Apply a grease to the pitman arm shaft, bushings, and gear teeth. Note the placement of the shaft key for correct gear orientation.
Drag Link Removal

1. See Figure A–27. Using a 9/16" socket and 9/16" open end or box wrench, remove the capscrew, washer and flanged hex nut that secure the steering arm assembly to the front rod end on the drag link. (For units equipped with early style drag links, see Figure A–6 for correct hardware and assembly).

2. Disassemble rear drag link rod end from pitman arm by removing capscrew, washers, spacer, and flanged hex lock nut (Figure A–28).

3. Remove the drag link rod ends by first loosening the jam nuts. Turn the jam nuts clockwise (looking at the end of the drag link shaft) one or two turns with a 3/4" open-end wrench, and then unscrew the rod end by turning it counter-clockwise.

4. Check the drag link for cracks or other damage, and replace if required. If the drag link is being replaced, position the jam nuts on the new drag link in the approximate positions utilized on the old drag link.

5. Inspect the rod ends for free movement/rotation of the rod end bearing, and replace the rod ends if necessary.

6. Reassemble the rod ends to the drag link, and reassemble the drag link to the unit in the reverse order of disassembly. Do not tighten the jam nuts until final spindle stop adjustments have been made.

NOTE: When reinstalling the rod ends, be sure to adjust the overall length of the drag link arm so that the left and right spindle stops stop against the axle assembly with full left and right turns respectively. See the adjustment procedures section for complete details.
GENERAL

The hand controls group consists of the following major components (also see Figures B–1 and B–2):

- Shift Lever
- Throttle Lever
- Choke Lever
- Parking Brake
- Lift Lever

The hand controls group assemblies can often be serviced without elevating the unit, but servicing these components requires removal of the hood assembly, dash assembly, and disconnecting several related parts, as well as disconnecting the battery cables and removing the battery. In general, removing the mower deck also makes service access much easier.

Inspecting parts for wear or breakage, or minor service, such as lubrication or tightening hardware, may, in some cases, be accomplished by simply removing the steering wheel and dash attachment hardware, and pulling the dash assembly up as far as slack in the wiring and control cables permits.

Required Tools & Equipment

Tools required for performing service on the hand controls group include:

- Hammer or rubber mallet
- Small flat blade screwdriver
- Phillips screwdriver
- Long-nose pliers
- 1/2" deep socket
- 3/8" Nut Driver or 3/8" socket w/6" min. extension
- 3/8" & 7/16" box or combination wrenches
- 3/8" & 7/16" open end wrench

DANGER

Always obey all safety precautions for working around battery hazards such as electrolyte, hydrogen gas, and live battery terminals when removing and reinstalling the battery. Always disconnect the negative terminal cable first, and reconnect it last, to help prevent dangerous sparking caused by accidental tool contact between the positive terminal of the battery and the frame. Keep the battery level when handling to prevent leakage of electrolyte.
EARLY MODEL SHIFT LEVER ASSEMBLY

A. Knob
B. Shift Lever
C. Cotter Pin
D. Washer
E. Torsion Spring
F. Plastic Bushing - 1/2" Dia.
G. Nylon Bushing - 3/4" Dia.
H. Tension Bracket
I. Hex Head Capscrew - 5/16-18 x 1-3/4"
J. Washer - 5/16"
K. Spacer
L. Washer - 5/8"
M. Washer - 1/2"
N. Spring
O. Hex Locknut - 5/16-18
P. Shift Lever Assembly

Torque To 75-100 in.-lbs.

Install washer with rounded edge down.

LATER MODEL SHIFT LEVER ASSEMBLY

A. Knob
B. Shift Lever
C. Cotter Pin
D. Washer
E. Torsion Spring
F. Plastic Bushing - 1/2" Dia.
G. Nylon Bushing - 3/4" Dia.
H. Washer - 1/2"
I. Hex Locknut - 5/16-18
J. Washer - 5/16"
K. Spring
L. Hex Nut 5/16-18
M. Lockwasher - 5/16"
N. Washer - H.T.
O. Spacer
P. Stud - 5/16-18 x 3-1/4"
Q. Carriage Bolt 1/4-20 x 3/4"
R. Washer - 21/64 x 1-1/4"
S. Tension Bracket
T. Washer - 1/4"
U. Lockwasher - 1/4"
V. Hex Nut 1/4-20
W. Shift Lever Assembly

Figure B–3. Typical Shift Lever Assemblies
Later Style Lift Lever Assembly

A. Knob
B. Lift Handle Rod
C. Carriage Bolt - 5/16-18 x 1-1/2"
D. Washer - 13/32 x 1-1/2"
E. Spacer
F. Washer - 5/16"
G. Hex Locknut - 5/16-18
H. Upper Lift Link
I. Upper Transport Lift Link
J. Cotter Pin
K. Lift Link
L. Lift Assembly Cam
M. Washer 21/64" x 1-1/4"
N. Spacer
O. Cotter Pin
P. Washer - 9/32"
Q. Parking Brake Cam
R. Parking Brake Rod
S. Plastic Knob

*T. Lift Handle Rod
*U. Carriage Bolt 5/16-18 x 1"

*Early Style Lift Lever Assembly Only
General Repair
6B Hand Controls Repair

Parking Brake Rod Service
1. See Figure B–5. Remove the cotter pin from the lower end of the parking brake rod, and after noting the correct installation position of the rod, disengage it from the parking brake cam. Lift the parking brake rod up and out of the lower dash/frame area, and inspect for wear or damage. Replace as necessary. Reassemble in reverse order of removal.

Parking Brake Knob Removal
1. The parking brake rod is threaded. Unscrew the parking brake knob from the parking brake rod. (Figure B–6)

Shift Knob Removal
3. Remove the shift lever knob from the shift lever as follows.
 a. Plastic knob - unscrews from shift lever by turning knob counterclockwise.
 b. Rubber knob - is pressed onto end of shift lever and may be removed by placing a 7/16” open end box wrench under the knob and tapping the wrench outward with a hammer or rubber mallet. (Figure B–7) Knobs that resist removal with this method may be heated with a heat gun or blow dryer to expand the I.D. of the knob slightly and separate it from the end of the shift lever.

 NOTE: Do not overheat the knob as this may distort the part or cause melting, and could prevent a secure fit when reattaching the knob. Use a low heat setting when using a heat gun, and keep the gun 4-6” away from the knob while moving back and forth to provide even heating.

4. Slide the knob off the shift lever, and check for cracks or excessive wear, and replace as necessary.

WARNING
Never use a heat gun or blow dryer if flammable vapors are present, as the heating element could ignite the vapor and cause a fire or explosion.
Shift Lever Assembly Service

Shift lever assembly service requires that the dashboard be removed. Refer to the Hood, Dash, and Grill Repair section for dashboard removal instructions.

After the dash assembly is fully separated from the unit, set it aside carefully to prevent damage to electrical components.

The lift lever, and shift lever assemblies are now fully accessible, as is the steering column shaft, and front transmission shift rod connection to the shift lever assembly. (Figure B–8).

Shift Lever Spring Adjustment

Tension on the shift lever may be increased or decreased by adjusting the tension on the shift lever compression spring (K, Figure B–3 Later Model Shift Lever Assembly). The correct tension for proper shift lever operation should be obtained when the adjustment locknut (I, Figure B–3) is torqued to 75 - 100 in./lbs.

1. Using a 1/2 deep socket with a 4" - 6" extension bar, remove the tension adjustment locknut and compression spring (Figure B–9). Inspect spring and surrounding parts for signs of wear or breakage, and replace as needed.

2. Reassemble parts in position as shown in Figure 4B–4, and torque to 75 - 100 in./lbs.

Shift Lever Replacement

1. Release tension on the shift lever by disengaging the torsion spring’s (E, Figure B–3) hooked end from the shift lever shaft. (Figure B–10)
2. Using a long-nose pliers, remove the cotter pin from the end of the shift lever. (Figure B–11)

3. Slide the shift lever out of the shift lever mounting bushings, and inspect for damage. (Figure B–12) Replace as necessary.

4. Apply a light application of grease to the end of the shift lever before reinstalling it into the plastic mounting bushings.

5. Secure the shift lever in place with the cotter pin, and re-engage the hooked end of torsion spring to the shift lever.

6. Check the shift lever for smooth operation.

Shift Lever Assembly Replacement

The shift lever assembly should be replaced if damaged or worn.

1. Remove the steering wheel and steering shaft. See Steering Wheel Removal and Steering Shaft Removal sections.

2. From the underside of the unit, remove the two steering gear adjustment locknuts (Figure B–13) that secure the steering mounting plate and lower nylon bushing to the frame. Removal of the locknuts allows the two mating carriage bolts to be removed from the inside, near the base of the shift lever assembly.

3. Disassemble the shift lever and related parts as previously shown in the Shift Lever Service section.
4. Using a 7/16" socket and a short extension bar, remove the two sets of hex nuts, lockwashers, flat washers, and carriage bolts that attach the tension bracket to the inside wall of the lower dash (Figure B–14).

5. Remove the cotter pin connecting the shift lever assembly arm to the front transmission shift rod linkage (Figure B–15).

6. The shift lever assembly may now be removed from the unit and inspected for wear or damage. Replace parts as required. Refer to Figure B–3 for proper assembly sequence of parts.

7. Reassemble parts in reverse order of disassembly. Apply a light coating of grease to the inside diameter of all bushings before reinstalling the shift lever assembly in the unit.

NOTE: On later models with adjustable tension, attach tension bracket (S, Figure B–3) against lower dash before tightening hex nut (L) on stud (P). Adjust tension on adjustment nut (I) to 75 - 100 in./lbs.

8. If no additional service is to be performed in this area, reassemble dash and related parts in reverse order of disassembly.

9. If lift lever parts are to be serviced, proceed to the Lift Lever Assembly Service section.
Shift Lever Rod Service

BROADMOOR LATE MODEL HYDROS

1. Remove battery from unit to provide access to front shift lever rod assembly at base of shift lever assembly (Figure B–16).

2. Remove cotter pin that secures front shift lever rod to shift lever arm, and set spacer aside for reuse when reassembling rod.

3. Safely elevate and support unit (mower deck removed) for working access to idler arm assembly area and related shift linkage parts (Figure B–17).

4. After noting assembly position of front and rear clutch rods (to ensure proper assembly when reassembling parts), remove cotter pin and washer from clutch rod.

5. Disengage the drive spring from the underside of the frame to release tension on the idler arm assembly, and remove.
3. See Figure B–19. Note the position of the belt stop relative to the v-pulley, and then loosen the lock nut that secures the v-pulley to the idler. Slide the drive belt out of the gap between the pulley and belt stop.

4. See Figure B–20. Slide the clip ring out of the groove on the pivot shaft, and remove the idler arm assembly from the unit by pulling it straight out and off the shaft. (See Foot Controls section 6C for specific idler arm assemblies and components used on various models.)

5. See Figure B–21. Remove the hex nut that secures the lockout lever to the shift pivot assembly. (See Figure B–21 for complete hardware details.)

6. Lift the rear shift rod off the screw threads and move it aside, and slide the lockout lever off the pivot shaft.
General Repair

6B Hand Controls Repair

Figure B–23. Disassemble Shift Pivot/Front Shift Rod Assembly

7. See Figure B–23. Unscrew the hex nut and related hardware used to connect the shift pivot assembly to the front shift rod.

8. The shift pivot assembly may now be removed from the shaft, allowing the front shift rod to be removed.

9. Inspect the shift pivot assembly for wear, corrosion, or other damage, giving particular attention to the inside surface of the pivot tube. Replace the shift pivot assembly if worn or corroded.

10. Check the front shift rod for cracks, corrosion, or other damage, and replace if necessary.

11. If no additional service is required, reassemble parts in reverse order of assembly, and make neutral and return-to-neutral adjustments as shown in the adjustments section of this manual.

12. See Figure B–24. If necessary, the rear shift rod may also be removed and replaced at this point. Remove the hex nut and related hardware that secure the rear shift rod to the speed control lever on the transmission.

Parts List

A. Rear Shift Rod
B. Spacer
C. 11/32 x 1-1/8 Washer
D. 5/16 Lockwasher
E. 5/16-18 Hex Nut
F. 5/16 Plain Washer
G. Spacer
H. Control Lever (Transmission)
I. 5/16-18 x 1-3/4 Hex Capscrew
J. 17/32 x 1-1/4 x 5/64 Thk. Washer
K. Cotter Pin
L. Front Shift Rod
M. 5/16-18 x 1-1/4 Carriage Bolt
N. 5/16-18 X 1 Carriage Bolt

Figure B–22. Front/Rear Shift Rod Assembly - Hydro

Figure B–24. Disassemble Rear Shift Rod From Transmission Shift Lever
General Repair

6B Hand Controls Repair

BROADMOOR GEAR SHIFT ROD - PEERLESS TRANS.

1. Remove battery from unit to provide access to front shift lever rod assembly at base of shift lever assembly (See preceding Broadmoor Hydro shift rod service section.)
2. Remove cotter pins that secure front shift lever rod to shift lever arm, and set washers aside for reuse when reassembling rod.
3. Safely elevate and support unit (mower deck removed) for working access to transmission shift lever area.
4. See Figure B–26. Remove capscrew, hex nut, washers and spacers connecting shift rod to shift lever, and remove shift rod from unit. Inspect shift rod for wear or damage, and replace as required.
5. Reassemble parts in reverse order of disassembly, applying grease to pivot points as indicated.
6. Adjust transmission as required for proper operation - see "Adjustments" section of manual for specific procedures.

Parts List

A. Shift Lever
B. 5/16 Washer
C. Spacer
D. 5/16 Lockwasher
E. 5/16-18 Full Hex Nut
F. Washer
G. 5/16 x 1-1/4 Capscrew
H. Shift Rod
I. 1/2 Washer
J. 3/32 x 3/4 Cotter Pin

BROADMOOR HYDRO SHIFT ROD - EATON TRANS.

1. Remove battery from unit to provide access to front shift lever rod assembly at base of shift lever assembly (See preceding Broadmoor Hydro shift rod service section.)
2. Remove cotter pins that secure front shift lever rod to shift lever arm, and set washers aside for reuse when reassembling rod.
3. Safely elevate and support unit (mower deck removed) for working access to transmission shift lever area.
4. See Figure B–25. Remove carriage bolt, hex nut, washers and spacers connecting shift rod to shift lever, and remove shift rod from unit. Inspect shift rod for wear or damage, and replace as required.
5. Reassemble parts in reverse order of disassembly, applying grease to pivot points as indicated.
6. Adjust transmission as required for proper operation - see "Adjustments" section of manual for specific procedures.

Parts List

A. 5/16-18 x 1-1/4 Carriage Bolt
B. Speed Control Lever
C. Spacer
D. Plain Washer
E. 5/16-18 Full Hex Nut
F. Washer
G. 5/16 x 1-1/4 Capscrew
H. Shift Rod
I. 1/2" Washer
J. 3/32 x 3/4 Cotter Pin
Lift Lever Assembly Service

Access for lift lever service may be achieved by removing the battery from the lower dash area, or for a greater access area, by removing the dash assembly and related parts as shown in the Hood, Dash, and Grill Repair Repair section. See Figure B–4 for a complete exploded view of all parts.

LIFT HANDLE ROD/LINK SERVICE

1. Using a 1/2" socket, remove the locknut securing the lift handle rod to the pivot spacer inside of the lower dash (Figure B–27).

2. Slide the lift handle rod off the spacer, and twist 90° to disengage from the upper lift link (Figure B–28). The lift handle rod can be removed through the slot in the lower dash. Inspect for wear or damage, and replace as required.

3. The upper lift link and lift link (H, K, Figure B–4) can be removed and inspected for wear and damage by disengaging them from the lift assembly cams under the unit. Replace links as necessary.

4. See Figure B–29-Top. If necessary, the upper transport lift link can be removed from the lift assembly cam by removing the cotter pin. Inspect the upper transport lift link and replace as required.

5. To remove the lift lever cam, use a box wrench and unscrew the hex nut securing it to the carriage bolt and unit frame. Inspect for wear or damage, and replace if required. Apply grease to the pivot spacer during reassembly.

6. Reassemble parts in reverse order of disassembly. Refer to Figure B–4 for correct part locations.
Engine Choke Control Service (Twin Cylinder Units Only)

On units with a dash-mounted engine choke control, the control is a push-pull button mounted on the lower left portion of the dash assembly (Figure B–30). For easiest service access, the battery should be removed from the unit.

1. Loosen the choke cable clamp on the engine using a phillips head screwdriver, and after noting the engagement of the cable end with the choke lever, remove the cable end from the choke lever (Figure B–31).

2. From inside the dashboard area, unscrew the hex nut that secures the choke cable assembly to the dash, and slide the choke cable and handle assembly out of the front of the dash. See Figure B–32.

3. Inspect all parts for wear or damage, and replace as required.

4. Reassemble parts in reverse order of disassembly.

5. Check the engine choke linkage for proper engagement with the cable and smooth operation of choke. See the engine manufacturer’s instructions for complete choke adjustment instructions.
Throttle (Engine Speed Control) Assembly

"Multi-piece" Throttle Assembly

"One Piece" Throttle Assembly
(Later Models)

THROTTLE CONTROL ASSEMBLY PARTS

A. Throttle Cable
B. Truss head Screw #10-32 x 1/2"
C. Carriage Bolt 5/16-18 x 1-3/4"
D. Throttle Handle
E. Throttle Knob
F. Nylon Washer
G. Throttle Mounting Bracket
H. Washer
I. Esna Light Hex Locknut
J. Plain Washer 5/16"
K. Spring
L. Plastite Screw 1/4-20 x 5/8"
M. Nut Assembly #10-32
N. Bowden Wire Clip
O. Throttle Knob
P. Plastite Screw 1/4-10 x 1/2"
Q. Throttle & Cable Assembly

Figure B–33. Throttle Control Assemblies
Throttle (Engine Speed) Control Service

The throttle control is attached to the underside of the dashboard and may be accessed by raising the unit's hood. For greater access and improved work area, the battery may be removed from the unit.

THROTTLE LEVER TENSION (MULTI-PART LEVER ASSEMBLY UNITS ONLY)

Note: Later models use a “one piece” non-adjustable throttle control that is replaced as an assemble.

1. Increase Tension - Tighten the locknut (I, Figure B–33) by turning clockwise.
2. Decrease Tension - Loosen the locknut (I, Figure B–33) by turning counterclockwise.

NOTE: When properly adjusted, the throttle lever will allow positioning with light force, and will maintain the selected position without slippage while the unit is being operated.

THROTTLE LEVER KNOB REPLACEMENT

1. Remove the throttle lever knob:
 a. Round throttle knob - Unscrew the knob from the throttle lever by turning the knob counterclockwise.
 b. “Flat” style knob - Remove the knob by pulling it straight off the throttle lever.
2. Inspect the knobs for cracks or other damage, and replace if required.

MULTI-PIECE THROTTLE LEVER ASSEMBLY REPAIR

1. Remove the wire clip securing the throttle cable (N, Figure B–33) to the throttle lever by removing the truss head screw and nut assembly (B & M)
2. Disengage the throttle cable from the throttle lever, and loosely reinstall the screw and nut on the clip to avoid loss during service (Figure B–34).
3. Remove the throttle lever from the throttle mounting bracket by unscrewing the hex locknut (I, Figure B–33) from the carriage bolt (C). (Keep the head of the carriage bolt against the throttle lever to keep the bolt from turning while the locknut is being removed.)
4. Slide the carriage bolt and throttle lever out of the throttle lever mounting bracket, catching the spring and washers as the carriage bolt is removed from the assembly.
5. Check the throttle lever mounting bracket (G, Figure B–33) for wear or damage. Remove and replace if necessary by unscrewing the three plastite screws securing the bracket to the underside of the dashboard.
6. Reassemble parts in reverse order of disassembly, using care to position the nylon washers on both sides of the throttle lever mounting bracket, and the metal washers on both sides of the spring, as shown in Figure B–33.
7. Adjust spring tension to provide secure positioning of lever while allowing smooth operation of lever.

ONE-PIECE THROTTLE LEVER REPAIR

1. Remove the throttle knob by pulling it straight off the throttle lever.
2. Unscrew the plastite screws (P, Figure B–33) securing the one-piece throttle assembly (Q) to the underside of the dashboard, and remove the one-piece throttle/cable assembly.
3. Inspect the assembly for wear or damage and replace as required. (Consult engine manufacturer’s manual for throttle cable connection to engine throttle linkage, if necessary.)
4. Reassemble in reverse order of disassembly.
GENERAL

Servicing the foot control group assemblies requires access to the underside of the frame, which may be gained by removing the mower deck and elevating the unit to a convenient working height using a properly rated jack or lift table.

The unit front end may also be tilted up for under-frame access using a properly-rigged chain hoist, however this method requires removal of the battery, and drainage of the fuel tank, to prevent hazardous electrolyte and fuel leakage.

DANGER

Never work on an elevated unit unless it is securely supported, and wheels are firmly chocked to prevent the unit from rolling off or away from the supports.

DANGER

Always obey all safety precautions for working around battery hazards such as electrolyte, hydrogen gas, and live battery terminals when removing and reinstalling the battery. Always disconnect the negative terminal cable first, and reconnect it last, to help prevent dangerous sparking caused by accidental tool contact between the positive terminal of the battery and the frame. Keep the battery level when handling to prevent leakage of electrolyte.

REQUIRED TOOLS & EQUIPMENT

Tools required for performing service on the foot controls assembly groups include:

- Hammer or rubber mallet
- Small flat blade screwdriver
- Phillips screwdriver
- Long-nose pliers
- 1/2" deep socket
- 3/8" Nut Driver or 3/8" socket w/6" min. extension
- 3/8" & 7/16" box or combination wrenches
- 3/8" & 7/16" open end wrench

Brake Spring: Approximate Compressed Length:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro-Gear 0750/0800</td>
<td>2-7/8"</td>
</tr>
<tr>
<td>Tuff Torq K60</td>
<td>2-7/8</td>
</tr>
<tr>
<td>Eaton 750</td>
<td>1-3/4</td>
</tr>
<tr>
<td>Peerless 801</td>
<td>2-7/8"</td>
</tr>
</tbody>
</table>

Figure C–1. Broadmoor Hydro Brake Pedal Location

Figure C–2. Broadmoor Gear Clutch/Brake Pedal Location
Figure C–3. Gear Foot Controls Group Typical Assembly

Figure C–4. Hydro Foot Controls Group Typical Assembly
HYDRO FOOT CONTROLS

Clutch / Brake Pedal Arm Assembly Service

Refer to Figures C-11 through C-13 for transmission-specific parts breakdowns.

1. Remove the mower deck, and position the unit to permit safe access to the underside of the frame and the foot control assembly parts (See Figures C–3 through C–4 for approximate part locations.)

2. Using a 9/16 socket wrench, remove the 3/8-16 locknut that secures the brake pedal assembly arm to the lift cam and foot pedal arm (Figures C–5 through C–7)

3. Note the position of the lift cam and foot pedal arms (Figure C–6), and slide the brake pedal arm out of the unit, catching the washers positioned under the lock nut as the brake pedal assembly arm is removed. (The lift cam, foot pedal arm, parking brake cam, switch actuator, and clutch rod may be left in place, partially assembled.)

4. To remove a worn foot pedal pad, clamp the brake pedal arm in a vise, and using a large adjustable open-end wrench placed over the flats of the brake pedal arm next to the pad, tap the wrench with a hammer or rubber mallet to slide the pad off the arm. (Pads that resist removal with this method may be heated lightly with a heat gun or blow dryer to expand the pad slightly, allowing it to be separated from the arm.)

NOTE: Heat gun: Use a low heat setting, keep the gun 4-6" away from the pad while moving back and forth to provide even heating. Avoid heating the brake pedal assembly arm, as this will reduce the effectiveness of heating the pad to separate it from the arm.

5. Before installing a new pad on the brake pedal assembly arm, check the arm, pivot shaft, and threaded end for wear, cracks, corrosion, or other damage, and replace if necessary.

6. Apply a light application of soapy water to the end of the brake pedal arm to act as a lubricant, and slide the new brake pedal pad on to the brake pedal assembly arm after making sure the pedal tread is positioned up toward the operator.

7. Tap the outer portion of the pad with a rubber mallet to make sure it is fully seated on the arm.

DANGER

Never use a heat gun or blow dryer if flammable vapors are present, as the heating element could ignite the vapor and cause a fire or explosion.
8. If no additional service is to be performed, reassemble remaining parts in reverse order of disassembly. See Figures C–11 through C–13 for correct parts positioning after reassembly, and check for proper operation of brake pedal assembly parts. If additional service in this area is required, continue to next section.

Clutch Rod Service

The clutch rod extends from the foot pedal arm through the slot in the guide rod/brake rod assembly, to the idler arm assembly, and is held in place at both ends by cotter pins. (See Figures C–6 & C–9)

Once the foot pedal assembly has been removed, the foot pedal arm/parking brake cam/switch actuator/clutch rod assembly can be removed from the unit as an assembled group for bench inspection and any required repair or replacement:

NOTE: The lift cam (Figure C–8) remains attached to the upper lift link. See Hand Controls Section for part position and placement.

1. Using a needle-nose pliers, remove the cotter pin that secures the parking brake rod to the parking brake cam (Figure C–9). (The parking brake cam uses the front end of the clutch rod as a pivot point, and must be separated from the parking brake rod to permit removal of the clutch rod and related parts as a group.)

2. Remove the cotter pin and washer that secure the rear end of the clutch rod to the idler arm (Figure C–9). The clutch rod and related parts can now be removed from the unit for inspection and any necessary repair.

3. Check all parts for signs of wear, corrosion, or damage, and replace individual parts as required. Before disassembling, note the assembly position of all parts.

4. Hydro Models only: The clutch rod must be straight between the bends at each end (Figure C–10). If the clutch rod is bent or damaged, remove the cotter pin and washer that secure it to the foot pedal arm/parking brake cam, and replace it.

5. Reassemble all parts in reverse order of disassembly, and check for free movement before reinstalling the clutch rod parts on the unit.

6. When reinstalling rear end of clutch rod to idler arm assembly, be sure to insert the clutch rod end through the hole in the guide rod/brake rod located under the idler arm before inserting the rod end into the slot in the idler arm. If no additional service is to be performed, check foot pedal arm and parking brake rod for proper operation.
Figure C–11. Broadmoor Hydro Foot Control - Brake Pedal Assembly Parts - Hydro-Gear 0750 / 0800

A. Brake Pedal Assembly
B. Foot Pedal Pad
C. Plastic Bushing
D. Lift Cam
E. Cotter Pin
F. 5/16" Plain Washer
G. Parking Brake Cam
H. Clutch Rod
I. 13/32" x 1-1/2" x 1/16" Washer
J. Spacer
K. 5/16" Washer
L. 5/16-18 Hex Nut
M. 5/16 Lockwasher
N. Tension Spring
O. Switch Actuator
P. 3/8-16 ESNA Hex Nut
Q. Washer
R. Foot Pedal Arm
S. 5/16-18 x 1-1/4" Carriage Bolt

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
Figure C–12. Broadmoor HYDRO Foot Control - Brake Pedal Assembly Parts - Eaton 750 / 751 & Tuff Torq K60

A. Brake Pedal Assembly
B. Plastic Bushing
C. Lift Cam
D. Cotter Pin
E. 11/32" Washer
F. Parking Brake Cam
G. Clutch Rod
H. 3/8-16 ESNA Hex Nut
I. 3/8" Washer
J. 9/32 Washer
K. Cotter Pin
L. Foot Pedal Pad

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol: 🪤
3. Oil locations indicated by oil can symbol: 🥤
Figure C–13. Broadmoor Gear Foot Controls - Brake Pedal Assembly Parts - Peerless 801

A. Brake Pedal Assembly
B. Plastic Bushing
C. Lift Cam
D. Cotter Pin
E. 11/32" Washer
F. Parking Brake Cam
G. Clutch Rod
H. 3/8-16 ESNA Hex Nut
I. 3/8" Washer
J. Washer
K. 5/16-18 Hex Nut
L. 5/16" Lockwasher
M. Torsion Spring
N. Spacer
O. Switch Adapter
P. Foot Pedal Arm
Q. 5/16-18 x 1-1/4" Carriage Bolt
R. Foot Pedal Pad

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol: 🎨
3. Oil locations indicated by oil can symbol: 🥂
Idler Arm Assembly Service

Refer to Figures C-23 through C-25 for transmission-specific parks breakdowns.

The idler arm assembly is a pivoting, spring-loaded mounting plate with pulleys that acts as a clutch/brake to engage and disengage the main drive belt.

1. Remove the cotter pin and washer that secure the rear end of the clutch rod to the idler arm (Figure C–18). (The clutch rod and rod guide can be left in place while the idler arm assembly is being serviced.)

2. Disengage the drive spring from the underside of the frame to release tension on the idler arm assembly, and remove.

3. See Figure C–19. Note the position of the belt stop relative to the v-pulley, and then loosen the lock nut that secures the v-pulley to the idler. Slide the drive belt out of the gap between the pulley and belt stop.

4. See Figure C–20. Slide the clip ring out of the groove on the pivot shaft, and remove the idler arm assembly from the unit by pulling it off the shaft.

5. Inspect the idler arm assembly for wear, cracked pulleys, or other damage, and replace parts as required. Refer to Figure C–6 for proper assembly position.

6. If service is to be performed on lockout lever or shift pivot assembly, proceed to next section. If no additional service is to be performed on idler arm assembly, reassemble idler arm assembly parts in reverse order of disassembly.

NOTE: Before tightening v-pulley locknut, reinstall drive belt and position belt stop in original location. Hold belt stop in position while tightening locknut to prevent stop from moving.
Lockout Lever Service (Hydro-Gear 0750 / 0800 Only)

The lockout lever is located directly under the idler arm assembly and is mounted on the same pivot shaft. The lockout lever, which is also referred to as a “return-to-neutral cam” (See “Adjustments” section of this manual) connects the rear shift rod, shift pivot assembly, and front shift rod.

When the brake pedal is fully depressed, the clutch rod engages the arm on the lockout lever, causing the link- age to pivot. This shifts the transmission into neutral, and automatically repositions the shift lever into the neutral gate. Visually inspect the lockout lever for wear, cracks, corrosion, or other damage, and replace if necessary following the steps below.

See Figure C-23 for a complete part breakdown.

1. See Figure C–21. Remove the hex nut that secures the lockout lever to the shift pivot assembly. (See Figure C–23 for complete hardware details.)
2. Move the rear shift rod to the side, and slide the lock- out lever off the pivot shaft.
3. See Figure C–22. If necessary, the rear shift rod may also be removed and replaced at this point. Remove the hex nut and related hardware that secure the rear shift rod to the speed control lever on the transmission (See Figure C–23).
4. If no additional service in this area is required, reassemble parts in reverse order of disassembly, and make any necessary adjustments for proper neutral and “return-to-neutral” operation, as shown in the “Adjustments” section of this manual. If shift pivot assembly or front shift rod service is required, proceed to next section.
Shift Pivot Assembly Service (Hydro-Gear 0750 / 0800 Only)
The shift pivot assembly is located on the pivot shaft behind the lockout lever, and attaches to the lockout lever and the front shift rod.

With the lockout lever removed, the shift pivot assembly can be visually inspected for wear, corrosion, or other damage, and can be removed and replaced by disassembling the hardware that attaches it to the front shift rod.

See Figure C-23 for a complete parts breakdown.

1. See Figure C–21. Unscrew the hex nut and related hardware used to connect the shift pivot assembly to the front shift rod.
2. Inspect the shift pivot assembly for wear, corrosion, or other damage, and replace if required.
3. See Figure C–22. If necessary, the front shift rod may also be removed and replaced at this point. For easiest access, remove the battery (see "Hand Controls" section), then remove the cotter pin and washers that secure the front shift rod to the shift lever assembly.
4. Check the front shift rod for wear or damage, and replace if necessary.
5. Reassemble all parts in reverse order of disassembly. Apply a liberal coating of grease to the pivot shaft before replacing linkages, and grease pivot points at both ends of front and rear shift rods.
6. After reassembling parts, make any necessary adjustments for proper neutral and "return-to-neutral" operation, as shown in the "Adjustments" section of this manual.

Figure C–21. Shift Pivot/Front Shift Rod Assembly

Figure C–22. Front Shift Rod/Shift Lever Assembly (Shown With Battery Removed)
Figure C–23. Broadmoor Hydro Foot Control - Idler Arm Assembly Parts - Hydro-Gear

A. Plastic Bushing F. 3/8-16 Flange Whizlock Nut K. Belt Stop
B. 3/8-16 x 1-3/4" Carriage Bolt G. Drive Spring L. Cotter Pin
C. Idler Arm Assembly H. "V" Pulley M. 5/16" Washer
D. Flat Idler Pulley I. 5/8" Clip ring N. Lockout Lever
E. 13/32 Washer J. 5/8" Washer O. Shift Pivot Assembly

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
Figure C–24. Broadmoor Hydro Foot Control - Actuator Assembly Parts - Eaton 750 / 751 & Tuff Torq K60

A. Cotter Pin
B. 11/32 Washer
C. Actuator Assembly
D. Clutch Lever
E. Idler Pivot Assembly
F. Drive Spring
G. Spacer
H. 13/32 Washer
I. Idler Pulley
J. 3/8-16 Flange Whizlock Nut
K. V-Pulley
L. 5/8 Clip ring
M. 5/8 Washer
N. Spacer
O. 3/8-16 x 1-3/4 Hex Capscrew

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
Figure C–25. Broadmoor Gear Foot Controls - Idler Arm Assembly Parts - Peerless 801

A. Plastic Bushing
B. 3/8-16 x 1-3/4" Carriage Bolt
C. Idler Arm Assembly
D. 5/8" Washer
E. 5/8 Clip ring
F. Idler Pulley
G. 3/8-16 Whizlock Flange Nut
H. 13/32" Washer
I. Cotter Pin
J. Drive Spring
K. "V" Pulley
L. 11/32" Washer
M. Belt Stop
N. Spacer
O. Spacer
P. Grease Fitting

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol: ⌀
3. Oil locations indicated by oil can symbol: ➡

Initial Mounting Hole For Drive Spring "J"
Mounting Hole For Drive Spring "J" After Belt Wear-In
Early Models

To Foot Pedal Arm Linkage

Front

Front End Of Frame - Steering Mounting Area

Attach To Front
Rod Guide / Brake Rod

ROD GUIDE SERVICE
The rod guide is installed between the rear of the clutch rod and the front of the brake rod. The brake rod extends from the rear of the rod guide to the brake lever on the transmission (See Figures C–29 through C–32).

1. Remove the cotter pin and washer that secure the rear end of the clutch rod to the idler arm and front end of the rod guide (See Figures C–11 through C–13).
2. Slip the brake arm spring off the rear portion of the rod guide (Figure C–27).
3. Remove the hex lock nut from the threaded end of the brake rod (Figure C–27), and remove the spring and rod guide.
4. Inspect the rod guide and springs for wear or damage. If no additional service in this area is to be performed, replace as required, reassembling in reverse order of disassembly. If brake rod service is required, proceed to next section.
5. Adjust tension on brake rod spring by turning hex lock nut - with parking brake applied. See Brake Spring: Approximate Compressed Lengths on the first page of this section.

BRAKE ROD SERVICE
The brake rod operates the brake lever on the transmission and is actuated by movement of the brake pedal/clutch rod/rod guide linkage (See Figures C–29 through C–32).

1. Remove the cotter pin and washer that secure the rear end of the clutch rod to the idler arm and front end of the rod guide (See Figures C–23 through C–32).
2. Slip the brake arm spring off the rear portion of the rod guide (Figure C–27).
3. Remove the hex lock nut from the threaded end of the brake rod (Figure C–27), and remove the spring and rod guide.
4. Remove the cotter pin and washer that secures the rear of the brake rod to the brake lever on the transmission (Figure C–28), and disengage the brake rod from the brake lever.
5. Inspect the brake rod for wear, corrosion, or other damage, and replace if required.
6. Reassemble parts in reverse order of disassembly, and adjust tension on brake rod spring by turning hex lock nut - with parking brake applied. See Brake Spring: Approximate Compressed Lengths on the first page of this section.
Figure C–29. Broadmoor Hydro Foot Control - Transmission Model Hydro-Gear 0750 / 0800 Brake Linkage

Parts

A. 3/8 Lockwasher
B. 3/8-16 Hex Nut
C. Cotter Pin
D. 5/16 Washer
E. Brake Rod
F. 3/8-16 Hex Lock Jam-nut
G. Spring
H. 5/16-18 Hex Nylon Locknut
I. Rod Guide
J. Brake Arm Spring
K. 3/8-16 x 1-1/4 Hex Capscrew

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
4. With parking brake engaged, length of compressed spring should be 1-3/4" +/- 1/8" (1-5/8" to 1-7/8") Adjust nut "I" as required to obtain correct spring length.
Figure C–31. Broadmoor Hydro Foot Controls - Tuff-Torq K60 Transmission Linkages

A. Cotter Pin
B. 11/32 Washer
C. Return-to-neutral Rod
D. Spring
E. 6mm x 55 mm Hex Capscrew
F. 1/4 Lockwasher
G. 6 mm Hex Nut
H. Washer
I. Cotter Pin
J. Brake Rod
K. Brake Spring
L. 5/16-18 Nylon Hex Locknut
M. Cam Assembly

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
4. With parking brake engaged, length of compressed spring should be 1-5/8" - 1-7/8"
Figure C–32. Broadmoor Gear Foot Control - Brake Pedal Assembly Parts - Peerless 801

A. Cotter Pin
B. 5/16 Washer
C. Spring
D. Brake Rod
E. 3/8-16 x 1-1/2 Hex Capscrew
F. Belt Stop
G. 3/8 Washer
H. 3/8 Spring Lockwasher
I. 3/8-16 Hex Nut
J. 3/8-16 Centerlock Jam Nut
K. Spring
L. Compression Spring
M. 5/16-18 Nylon Lock Nut
N. Brake Rod Guide
O. Spring
P. Brake Arm Assembly

NOTES:
1. Unless specified, use torque specifications shown on standard hardware torque specification chart.
2. Grease locations indicated by grease gun symbol:
3. Oil locations indicated by oil can symbol:
4. With parking brake engaged, compressed length of spring should be 2-7/8".
HOOD, GRILLE & DASH REPAIR

General

The hood and grille are easily removed as an assembly for repair or engine access. No special tools are required to disconnect the headlight wire assembly during the hood removal.

Once the hood assembly is removed, access is gained to both the hood and the dash for inspection or repair. Hood removal is recommended prior to removal of the dash.

Hood & Grille Removal

1. Unlatch the rubber hood strap (G, Figure D–2) on each side of the hood and raise the hood to its upright position.

Figure D–1. Tractor Overview

Figure D–2. Hood Assembly Parts

A. Air Duct
B. Hood
C. Headlight Assy
D. Grille
E. Side Panels
F. Hood Hinge Assembly
G. Hood Strap
2. Disconnect the headlight wire harness at the two pin connector (D, Figure D–3) located near the oil fill tube on the right side of the engine. Thread the wire harness out through the engine lift bracket and remove it from the speed clip attaching the harness to the hood.

3. Using needle-nose pliers, remove the clip (A, Figure D–4) on each of the hood pivot points.

4. Slide out and remove the hood pivot spacer (B) from each of the hood hinges.

5. Lift the hood off of the tractor.

6. For hood installation, perform Steps 1 through 5 in reverse order.

Figure D–3. Headlight Assembly

A. Lens
B. Bezel
C. Bulb Socket
D. Pin Connector

Figure D–4. Hood Hinge Assembly

A. Clip
B. Pivot Spacer
Dash Removal

1. Remove the hood according to the instructions in the previous section.

2. Remove the steering wheel. See Steering and Front Wheel Repair.

3. Remove the shift lever knob from the shift lever.
 a. Plastic knob - unscrews from shift lever by turning knob counterclockwise.
 b. Rubber knob - is pressed onto end of shift lever and may be removed by placing a 7/16” open end box wrench under the knob and tapping the wrench outward with a hammer or rubber mallet. (Figure D–5) Knobs that resist removal with this method may be heated with a heat gun or blow dryer to expand the I.D. of the knob slightly and separate it from the end of the shift lever.

 NOTE: Do not overheat the knob as this may distort the part or cause melting, and could prevent a secure fit when reattaching the knob. Use a low heat setting when using a heat gun, and keep the gun 4-6” away from the knob while moving back and forth to provide even heating.

4. Slide the knob off the shift lever, and check for cracks or excessive wear, and replace as necessary.

5. Unscrew the parking brake knob from the parking brake rod. (Figure D–6)

6. Disconnect the battery cables, negative cable first.

7. Remove the battery hold-down and remove the battery.
8. Remove the whizlock capscrews from the lower front corners of the dash using a 3/8" box wrench. These screws fasten into captive palnuts on the dash, and require no additional tools for hardware removal. (Figure D–8)

9. Using a 3/8" nutdriver or 3/8" socket with a 6" extension bar, remove the two whizlock capscrews with washers that secure the rear of the dash to the lower dash. Use care to avoid dropping the washers as the screws are removed. (This location also uses captive palnuts to simplify disassembly.) (Figure D–9)

10. Disconnect the starter cable from the solenoid using a 1/2" box wrench. Temporarily reinstall the hex nut and lockwasher on the threaded solenoid post to prevent parts loss during service (Figure D–10).
11. See Figure D–11. Disconnect the lower harness connector by pulling the two halves apart. Use a firm grip and a light, side-to-side flexing motion on the connector to separate the connector halves.

12. See Figure B–11. If the connector cannot be separated by using a gentle flexing motion on each of the two halves, insert a small, flat-blade screwdriver between the halves, and use a gentle prying motion to separate the connector (Figure D–12).

NOTE: Do not use excessive force when prying the connector apart, as this could crack the plastic connector housing. Apply light pressure on opposite sides of the connector, and gradually work the connector apart. The electrical connectors used on these units are designed to withstand continuous vibration, and may require repetitive prying to separate.

13. Locate the two green/black wires that connect the upper wire harness to the switch located at the base of the brake pedal. Disconnect the two wire connector (A, Figure D–13) located under the dash.
14. Using a 3/8" open end wrench, loosen the hex nut that secures the throttle cable end clamp to the throttle cable mounting bracket, and detach the clamp from the bracket. Reinsert the screw and hex nut into the clamp to prevent loss (Figure D–14).

15. See Figure D–15. Note the engagement of the cable end in the throttle lever, and remove the throttle cable from the hole in the throttle lever. Position the throttle cable out of the way so that it does not interfere with shift lever and lift lever service.

16. See Figure D–16. On models equipped with a choke, loosen the choke cable clamp on the engine using a screwdriver. Note the position of the choke lever and the engagement of the cable end in the choke lever.
17. See Figure D–17 Remove the cable end from the choke lever. Pull the choke cable back toward the dash assembly, and through the access hole in the bulkhead to permit removal of the dash assembly from the unit.

18. Carefully lift the dash assembly up and away from the lower dash, steering column, and shift lever assembly. As the dash assembly is lifted, it may be helpful to move the shift lever forward and backward slightly.

19. After the dash assembly is fully separated from the unit, set it aside carefully to prevent damage to electrical components.
SEAT, DECK & FUEL TANK REPAIR

Seat Removal

Note: Seat and seat deck can be removed as an assembly if individual component repair is not required. Go to “Seat Deck Removal”.

1. Tilt the seat forward and disconnect the two wire cable harness attached to the operator present safety switch (A, Figure E–1). Note that the harness plug has a locking tab that must be released before disconnecting plug.

2. Remove the wire harness from the speed clip (B) that holds the harness to the bottom of the seat.

3. Push the wire harness back through the hole in the seat deck it comes through.

4. Remove the two nuts connecting the seat assembly to the seat deck as shown in Figure E–2.

5. Remove the seat assembly from the seat deck.

6. For replacement of the Operator Present Seat Switch, remove a spring cover (A, Figure E–3) from one of the seat springs. Remove the nut (B) from the carriage bolt. Pull the switch plate (C) over the end of the carriage bolt and pivot the switch plate to the rear. Access is now available for removal of the Operator Present Seat Switch.
Seat Deck Removal

NOTE: If the seat has already been removed, proceed to step 3.

1. Tilt the seat forward and disconnect the two wire cable harness attached to the operator present safety switch (A, Figure E–1). Note that the harness plug has a locking tab that must be released before disconnecting plug.
2. Remove the wire harness from the speed clip (B, Figure E–1) that holds the harness to the bottom of the seat.
3. Remove the two bolts (located at the rear of the foot rests, Figure E–4) connecting the seat deck to the tractor frame.
4. Repeat on the other side of the tractor.
5. Remove the two bolts connecting the seat deck to the deck supports (Figure E–5).
6. Remove the seat deck.
7. For seat installation, follow removal steps in reverse order.

Fuel Tank Removal

1. Remove the seat and deck before removing the gas tank. (Refer to the Seat and Deck Removal section.)
2. Using a pliers, loosen the clip holding the gas line to the tank and slide it down the gas line. See Figure E–6.
3. Disconnect the gas line from the gas tank.
4. Loosen the capscrews (A, Figure E–7) attaching the seat support to the tractor frame.
5. Repeat Step 4 for the second seat support.
6. Remove the gas tank.
7. For gas tank installation, follow removal steps in reverse order.
REAR WHEEL REPAIR

General
The following is an exploded view of the rear wheel assemblies.

Apply anti-seize compound to axle before assembly.

Retaining ring must be properly seated in groove of rear axle.

Figure F-1. Rear Wheel Assembly
A. Rear Tire
B. Tube (Optional)
C. Washer
D. Spacer
E. Rim Assembly
F. Washer, Hub Cap Retainer
G. Washer
H. Retaining Ring
I. Hub Cap
J. Valve Stem & Cap
6 General Repair

6F Rear Wheel Repair

DANGER

PREVENT SERIOUS INJURY OR DEATH FROM FALLING UNIT

Always use a properly working lifting device with a capacity suitable for the weight of the unit being serviced.

Always use a jack stand to support the unit while performing service, and chock remaining wheels to prevent the unit from rolling off the supports.

Never work under or around an elevated unit that is not properly supported and secured in position with wheel chocks.

ELEVATING REAR END FOR SAFE SERVICE

1. Remove ignition key, and disconnect spark plug wire to prevent accidental starting while working on the unit.

2. Engage the parking brake, block the front wheels, and using a hydraulic or scissors jack positioned at the center of rear frame assembly, carefully jack the unit up until the rear tires are approximately 1" - 2" off the ground.

NOTE: For overall unit stability during service, do not jack rear end higher than required for tire removal.

3. Support the rear of the unit on jackstands positioned under each footrest as shown in Figure F–2.

REAR WHEEL REMOVAL

1. Elevate the rear end. (See previous section)

2. Remove the plastic dust cover.

3. Remove the retaining ring, washer, and hub cap retainer (See Figure F–3).

4. Remove the wheel, key, spacer, and washer.

Figure F–2. Jacking and Supporting Tractor

Figure F–3. Rear Wheel Removal
SECTION CONTENTS

7A. Peerless 801-059B
- General ... 7-2
- Removal and Installation Instructions 7-3
- Explosion Diagram ... 7-4

7B. Eaton 750 / 751
- General ... 7-7
- Explosion Diagrams ... 7-8
- Removal ... 7-12
- Disassembly ... 7-14
- Axle Removal (Eaton 750) 7-15
- Axle Disassembly (Eaton 750) 7-16
- Axle Removal (Eaton 751) 7-18
- Axle Disassembly (Eaton 751) 7-19
- Brake Housing Disassembly (Eaton 750 Only) ... 7-20
- Housing Disassembly ... 7-21
- Rotor Disassembly and Inspection 7-25
- Reassembly, General ... 7-25
- Housing Reassembly ... 7-26
- Cover Reassembly ... 7-28
- Axle Installation (Eaton 750) 7-29
- Axle Housing Reassembly (Eaton 750)............. 7-34
- Axle Housing Reassembly (Eaton 751)............. 7-36
- Installation ... 7-39

7C. Tuff Torq K-60
- General ... 7-41
- Explosion Diagrams ... 7-42
- Removal ... 7-44
- Disassembly ... 7-49
- Assembly ... 7-63
- Installation ... 7-77

7D. Hydro-Gear 310-0750 / 310-0800
- General ... 7-79
- Explosion Diagrams ... 7-80
- Removal ... 7-82
- Disassembly ... 7-85
- Assembly ... 7-95
- Installation ... 7-97
General
The Peerless 801-059B five speed gear transaxle is a rugged and efficient gear drive transaxle using an automotive style differential and rugged disc brakes.

NOTE: This transaxle is serviced by the manufacturer and not by Simplicity. The exploded parts view is shown here and in the parts manual for reference purposes only.

Should service be required, contact an authorized Peerless Service Repair Dealer for technical data and repair specifications.

IMPORTANT: Cleanliness is a primary means of assuring satisfactory life on new or repaired units. Cleaning parts by using a solvent wash and air drying is usually adequate. As with any precision equipment, all parts must be kept free of foreign materials and chemicals.

- Protect all exposed sealing surfaces and open cavities from damage and foreign material.
- Prior to removing and disassembling transaxle, the tractor should be steam cleaned or blown with compressed air before beginning any repairs.
- It is recommended that all seals be replaced before transaxle is reassembled. Lightly lubricate all seals with a clean petroleum jelly prior to assembly.
- After transaxle is removed from the tractor, remove all external components such as the brake arm, brake actuating pins, control arm, input pulley, and frame mounting hardware before separating case halves.
Transmission Removal

1. Safely elevate the rear of the tractor on jackstands (see Elevating Rear for Safe Service).
2. Remove the rear wheels (See Rear Wheel Removal)
3. Disconnect the shift rod from the shift lever on top of the transmission (A, Figure A–3).
4. Disengage the parking brake (if not already done) and disconnect the brake extension spring and brake rod from the brake lever on the transmission (B).
5. Disconnect the transmission support brackets from the transmission case by removing the two taptite screws on each side (C).
6. Engage the parking brake to slacken the belt.
7. Loosen the capscrews securing the transmission to the frame (D).
8. Take the drive belt off the transmission pulley (E).
9. While supporting the transmission with a floor jack, remove the capscrews (D) and lower the transmission making sure the pulley and all linkages clear the frame.

For installation follow removal instructions in reverse order.

Figure A–3. Transmission Removal
A. Shift Rod
B. Brake Linkage and Spring
C. Transmission Support Brackets
D. Capscrews
Figure A–2. Peerless 801-059B Five Speed Gear Transaxle Exploded View
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transaxle Cover</td>
<td>42</td>
<td>Screw, 1/4-20 x 1-1/4"</td>
</tr>
<tr>
<td>2</td>
<td>Bearing, Needle</td>
<td>43</td>
<td>Screw, 1/4-20 x 2-1/4"</td>
</tr>
<tr>
<td>3</td>
<td>Transaxle Case</td>
<td>44</td>
<td>Brake Pad Holder</td>
</tr>
<tr>
<td>4</td>
<td>Countershaft</td>
<td>45</td>
<td>Spacer</td>
</tr>
<tr>
<td>5</td>
<td>Output Pinion</td>
<td>46</td>
<td>Brake Lever Bracket</td>
</tr>
<tr>
<td>6</td>
<td>Output Gear (35 Tooth)</td>
<td>47</td>
<td>Axle (12-1/2" Long)</td>
</tr>
<tr>
<td>7</td>
<td>Spur Gear (15 Tooth)</td>
<td>48</td>
<td>Axle (14-3/4" Long)</td>
</tr>
<tr>
<td>8</td>
<td>Shift Key</td>
<td>49</td>
<td>Spur Gear (37 Tooth)</td>
</tr>
<tr>
<td>9</td>
<td>Shift Collar</td>
<td>50</td>
<td>Spur Gear (30 Tooth)</td>
</tr>
<tr>
<td>10</td>
<td>Shift Fork</td>
<td>51</td>
<td>Spur Gear (25 Tooth)</td>
</tr>
<tr>
<td>11</td>
<td>Bevel Gear (42 Tooth)</td>
<td>52</td>
<td>Spur Gear (22 Tooth)</td>
</tr>
<tr>
<td>12</td>
<td>Input Bevel Pinion</td>
<td>53</td>
<td>Spur Gear (20 Tooth)</td>
</tr>
<tr>
<td>13</td>
<td>Bevel Gear (16 Tooth)</td>
<td>54</td>
<td>Spur Gear (12 Tooth)</td>
</tr>
<tr>
<td>14</td>
<td>Bevel Pinion (16 Tooth)</td>
<td>55</td>
<td>Spur Gear (20 Tooth)</td>
</tr>
<tr>
<td>15</td>
<td>Differential Gear Assembly</td>
<td>56</td>
<td>Spur Gear (25 Tooth)</td>
</tr>
<tr>
<td>16</td>
<td>Drive Pin</td>
<td>57</td>
<td>Spur Gear (28 Tooth)</td>
</tr>
<tr>
<td>17</td>
<td>Spacer</td>
<td>58</td>
<td>Spur Gear (30 Tooth)</td>
</tr>
<tr>
<td>18</td>
<td>Ball, 5/16"</td>
<td>59</td>
<td>Washer</td>
</tr>
<tr>
<td>19</td>
<td>Set Screw, 3/8-16 x 3/8"</td>
<td>60</td>
<td>Input Shaft</td>
</tr>
<tr>
<td>20</td>
<td>Spring</td>
<td>61</td>
<td>Shifter & Brake Shaft</td>
</tr>
<tr>
<td>21</td>
<td>Screw, 1/4-20 x 1-1/4"</td>
<td>62</td>
<td>Disk</td>
</tr>
<tr>
<td>22</td>
<td>Retaining Ring</td>
<td>63</td>
<td>Square Cut Ring</td>
</tr>
<tr>
<td>23</td>
<td>Retaining Ring</td>
<td>64</td>
<td>Pushnut, 1/2"</td>
</tr>
<tr>
<td>24</td>
<td>Washer</td>
<td>65</td>
<td>Threaded Plug</td>
</tr>
<tr>
<td>25</td>
<td>Washer</td>
<td>66</td>
<td>Roller Chain (No. 40, 22 links)</td>
</tr>
<tr>
<td>26</td>
<td>Washer</td>
<td>67</td>
<td>Sprocket (10 Tooth)</td>
</tr>
<tr>
<td>27</td>
<td>Washer</td>
<td>68</td>
<td>Sprocket (14 Tooth)</td>
</tr>
<tr>
<td>28</td>
<td>Washer</td>
<td>69</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>29</td>
<td>Washer</td>
<td>70</td>
<td>Ball Bearing</td>
</tr>
<tr>
<td>30</td>
<td>Washer</td>
<td>71</td>
<td>Grease (32 oz. Bentonite)</td>
</tr>
<tr>
<td>31</td>
<td>Washer</td>
<td>72</td>
<td>Needle Bearing</td>
</tr>
<tr>
<td>32</td>
<td>Washer</td>
<td>73</td>
<td>Square Cut Ring</td>
</tr>
<tr>
<td>33</td>
<td>Washer</td>
<td>74</td>
<td>Washer</td>
</tr>
<tr>
<td>34</td>
<td>Washer</td>
<td>75</td>
<td>Bushing</td>
</tr>
<tr>
<td>35</td>
<td>Washer</td>
<td>76</td>
<td>Washer</td>
</tr>
<tr>
<td>36</td>
<td>Washer</td>
<td>77</td>
<td>Roll Pin</td>
</tr>
<tr>
<td>37</td>
<td>Washer</td>
<td>78</td>
<td>Gasket Eliminator (Loctite #515)</td>
</tr>
</tbody>
</table>
EATON MODEL 750, 751 HYDROSTATIC TRANSAXLE

General Notes

The Eaton models 750 and 751 consist of a radial ball piston pump and two radial ball piston motors. The motors drive double series planetary gear sets which, in turn, drive the axles.

The level of cleanliness maintained while repairing the transaxle could affect its performance. Work in a clean area. Before removing the transaxle from the tractor, steam clean or pressure wash all debris from the surrounding area. After disassembly, wash all parts with clean solvent and blow the parts dry with air. Inspect all mating surfaces. Replace any damaged parts that could cause internal leakage. Do not use emery paper, files, or grinders on finished parts.

!!!!!Warning, compressed air is dangerous etc etc etc

To ensure correct installation on the Model 750, the axle housings are marked with the letters A and B. Each side of the housing assembly is also marked with an A or B. The axles on the Model 751 are identical. Make sure the axle housings are correctly assembled with corresponding letters on the housing assembly.

NOTE: Whenever a transaxle is disassembled, our service policy is to replace all seals. Lubricate the new seals with petroleum jelly (Vaseline) before installation. Use only clean, recommended fluid on the finished surfaces at reassembly.
1. Ring, Retaining, Internal
2. Ring, Retaining, External
3. Bearing, Input Shaft
4. Shaft, Input
5. Seal, Oil
6. Adapter, Hose, 3/8"
7. O-Ring, Fitting
8. Top Cover
9. Gasket, Cover, (A)
10. Capscrew, 1/4"- 20
11. Cam, Ring
12. Piston, Quieting
13. Drive
14. Pump, Rotor, Ball
15. Adapter
16. Plug, Socket Head
17. Dowel
18. Motor, Rotor, Ball
19. Seal, Lip, Radial
20. Boot, Dust
21. Screw, 1/4"- 20, Self-Tapping
22. Cover, Brake, Parking
23. Brake Assembly, Parking
24. Cover, Valve
25. Gasket, Valve Cover (A)
26. Housing
27. Seal, Oil
28. Button
29. Shaft, Control
30. Insert
31. Fitting
32. O-Ring
33. Dump Valve Bracket
34. Spring, Dump Valve
35. Kit, Gasket (Includes parts marked "A")
Figure B–4. Eaton 750 Hydrostatic Transaxle

1. Carrier, Secondary
2. Gear, Planetary
3. Gear, Sun
4. Assembly, Gear, Planetary
5. Carrier, Primary
6. Gear, Planetary
7. Gear, Sun
8. Assembly, Gear, Planetary
9. Gear, Ring, 54T
10. Gasket, Housing, Axle
11. Plate, Wear
12. Gasket, Housing, Axle
13. Lock Gear, Differential
14. Shaft, Brake
15. Ring, Retaining, Internal
16. Bearing, Ball
17. Seal, Radial, Lip
18. Shaft, Axle
19. Ring, Retaining, External
20. Washer, Thrust
21. Housing, Axle, Left
22. Housing, Axle, Right
23. Plug, Magnetic
24. Capscrew, Hex, Flange 1/4-20 x 2-3/4
25. Shaft, Brake
26. Lock Gear, Differential
Figure B–5. Eaton 751 Hydrostatic Transaxle

1. Assembly, Cover
2. Ring, Retaining, External
3. Assembly, Shaft, Input
4. Seal, Input Shaft
5. Seal, Control Shaft
6. Cover
7. Screw, Self-Tap, 1-4/20
8. Assembly, Fitting
9. Gasket, Cover
10. Button
11. Drive
12. Pump, Rotor-Ball
13. Shaft, Control
14. Insert
15. Ring, Cam
16. Filter, Hydraulic
17. O-Ring
18. Fitting
19. Motor, Rotor-Ball, 18T
20. Pad, Friction
21. Nut, Hex, Lock
22. Lever, Brake, Left Hand
23. Shim
24. Lever, Brake, RH
25. Screw, Cap, Hex
26. Shaft, Brake
27. Spring, Conical
28. E-Ring
29. Rod, Push
30. Seal, Quad
31. Spring, Dump Valve
32. Bracket, Dump Valve
33. O-Ring
34. Housing
35. Gasket, Valve Cover
36. Cover, Valve
37. Capscrew, Hex, 1/4-20
38. Piston, Quieting
39. Base, Spring
Figure B–6. Eaton 751 Hydrostatic Transaxle Axle Assembly

1. Screw, 1/4"- 20
2. Housing, Axle
3. Gasket, Housing, Axle
4. Ring, Retaining, Internal
5. Bearing, Ball
6. Seal, Radial, Lip
7. Shaft, Axle
8. Ring, Retaining, External
9. Washer, Thrust
10. Carrier, Secondary
11. Planet Gear, Second, 18T
12. Gear, Ring, 54T
13. Sun Gear, Second, 18T
14. Primary Carrier, 18T
15. Planet Gear, First, 18T
16. Sun Gear, First, 18T
17. Plate, Back-Up
18. Plate, Reaction
19. Housing, Axle (Contains Items 2, 4–9)
Removal

1. Jack up the rear end and remove the rear wheels. (See the Elevating Rear End for Safe Service and Rear Wheel Removal sections)
2. Place a drain pan under the transaxle.
3. Remove the oil intake hose (A) from the right-front of the transaxle and allow the oil to drain.
4. Remove the nut, washer, and bolt (B) holding the shift lever to the bracket.

Figure B–7. Remove Oil Hose and Shift Linkage
A. Oil Intake Hose B. Shift Lever

5. Remove the nut and washer holding the bypass lever to the transaxle bypass valve shaft.
6. Remove the large idler arm spring from the front of the transaxle mounting bracket.

Figure B–8. Remove Bypass Lever

Figure B–9. Remove Neutral-Return Rod

7. Remove the neutral-return rod from the neutral-return cam on the top of the transaxle.
8. Unhook the brake return spring from the left rear corner of the frame.
9. With a floor jack supporting transaxle, remove the hardware securing the front transaxle support to tractor frame.

10. Remove the capscrews holding the axle supports to side frames.

11. Slowly lower the transaxle from tractor just enough to do the following:
 • Remove hydro drive belt from transaxle drive pulley and fan.
 • Expose and remove the oil return hose from the fitting on top of transaxle.
 • Remove the cotter pin and washer holding the brake rod to brake lever. Remove the rod and lower transaxle to ground.

12. Remove the following from the transaxle:
 • Brake bracket assembly
 • Cooling fan
 • Hydro drive pulley
 • Front transaxle support
 • Hydro cam
 • Neutral return cam
 • Neutral detent support assembly
Disassembly

1. Turn transaxle upside down and drain case through case drain port.

Note: Model 751 has a filter located between valve cover (A) and main housing (B). Refer to item 16, Figure B–5 for reference.

2. Remove capscrews holding valve cover to case. Remove the cover.

3. Remove and discard valve cover gasket.

Note: The gasket may have remained on the cover when removed from housing assembly.

4. On model 750 discard the filter element and replace before reassembly.

Note: After the transaxle is drained, it is easier to remove the axle assemblies with the transaxle mounted to a bench as shown. Before securing the transaxle in this position, place a clean shop towel between the housing base surface and the work surface. This towel protects the base sealing surface from possible damage during repositioning. Use a 6" to 8" C-clamp to secure the transaxle to the bench. Be careful not to overtighten the C-clamp when securing the transaxle.

Note: The following procedure is identical for both left and right axle assemblies. Keep left axle parts and right axle parts separate. (On the model 750 the left hand side is marked “A” and the right hand side is marked “B”)
Axle Removal (Eaton 750)

1. With the transaxle secured to bench, use a 3/8” wrench to remove the axle mounting capscrews.

2. Carefully remove the axle assembly (up to and including wear plate) from the housing.

Figure B–16. Remove Axle Assembly & Wear Plate

3. In most cases, the differential shaft will remain in the transaxle housing when the axle is removed. If this occurs, remove the differential shaft at this time.

Figure B–17. Remove Differential From Transaxle

IMPORTANT: Be extremely careful when removing the motor rotor assemblies. The ball pistons are spring loaded and must remain in their bores because each ball piston is matched to its respective bore.

4. The best way to remove the motor rotor assemblies is to place a separate motor race on top of the existing motor race in the housing assembly. Hold the separate race securely in position. Then, carefully pull the motor rotor assembly outward until the ball pistons are fully engaged in the groove located in the center of the separate race. Carefully remove the rotor assembly and race together as a set, handling the motor rotor assembly only.

NOTE: If a separate motor race is not available, a piston ring compressor, a wide rubber band, or differential seal (P/N 121190) may be used to hold the ball pistons in their bores.

Figure B–18. Remove Motor Assembly

Figure B–19. Motor Balls and Springs
Axle Disassembly (Eaton 750)

1. Remove and discard the axle housing gasket from the wear plate.
 NOTE: Gasket may have remained on the transaxle housing during removal of the axle assembly.

2. Remove the wear plate from the axle assembly.

3. Remove the axle housing gasket from the ring gear assembly and discard.

4. Remove the first sun gear from the primary carrier assembly.
 NOTE: The first sun gear may or may not have remained in the motor rotor during removal of the axle assembly.

5. Remove the primary carrier assembly from the ring gear assembly.

6. Remove the second sun gear from the secondary carrier assembly.

7. Remove the ring gear assembly from the axle housing.

8. Remove the gasket and dowel pins from the axle housing. Discard gasket.
9. Remove the brake gear from the axle housing.
10. Remove the spacer washer from axle housing.
 NOTE: Spacer washer may stick in axle housing due to
 grease in housing.

11. Remove the secondary carrier assembly from the
 axle shaft.

12. Both the primary and secondary carrier assemblies
 may be disassembled for inspection.

13. Remove the large thrust washer from the axle hous-
 ing. (Not used on date code G01J or higher.)
 NOTE: The plug below the large thrust washer is mag-
 netic and can be removed from outside the axle housing
 using an Allen wrench. Remove this plug for oil and cont-
 amination analysis.
14. Reposition the axle housing with the splined end of the axle in the up position. Using No. 4 or 5 external snap ring pliers, remove the retaining ring and thrust washer from the axle shaft.

15. Reposition the axle housing assembly with the wheel end of the axle in the up position. Using No. 5 or 7 internal snap ring pliers, remove the ball bearing retaining ring from the axle housing.

16. Remove the axle from the axle housing by using a small press or by tapping the splined end of the axle with a plastic faced hammer. This will dislodge the seal and bearing from the axle bore.

17. After separating the axle from the axle housing, remove the ball bearing, seal and thrust washer from the axle shaft. The thrust washer may have remained in the axle housing during removal of the axle shaft.

NOTE: The retaining ring remaining on the axle shaft need not be removed.

Axle Removal (Eaton 751)

1. With the transaxle secure, use a 3/8 inch wrench to remove the flange screws from one (A-side or B-side) axle housing assembly.

2. After removing the flange screws, carefully remove the axle housing from the transaxle housing.

Caution: Retain the planetary assemblies in the axle housing assembly during removal.
Axle Disassembly (Eaton 751)

1. Carefully position the axle housing assembly on a clean flat surface, then separate axle housing from the planetary assemblies as shown.

2. Position the axle housing assembly with the output end of the axle shaft in the up position. Using No. 5 or 7 internal retaining ring pliers, remove the ball bearing retaining ring from the axle housing.

3. Reposition the axle housing with the splined end of the axle in the up position. Using No. 4 or 5 external retaining ring pliers, remove the retaining ring and thrust washer from the axle shaft.

4. Remove the axle from the axle housing by using a small press or by tapping the splined end of the axle shaft with a plastic faced hammer. This will dislodge the seal and bearing from the axle housing.

5. After separating the axle shaft from the axle housing, remove the ball bearing, seal and thrust washer from the axle shaft. The thrust washer may be in the axle housing.

NOTE: The retaining ring remaining on the axle shaft need not be removed.

6. To disassemble the planetary assemblies for inspection and cleaning, first remove the ring gear (from the secondary carrier/planet gears).

7. Next, putting a slight squeeze on the secondary carrier planet gears, remove the three secondary planet gears and carrier.

8. Turn the assembly over and remove the secondary planet gears for inspection and cleaning.

9. Remove the sun gear and remaining ring gear.

10. Again, putting a slight squeeze on the remaining carrier planet gears, remove planet gears and carrier from the backup plate.

11. The planet gears may be removed for inspection and cleaning.
12. Remove the reaction plate from the primary sun gear.
13. Remove the primary sun gear from the motor rotor assembly.
14. Remove the small friction brake pad assembly from its recessed pocket located in the axle housing.
15. Shown in previous drawing are the three major parts used in the Eaton transaxle wet brake assembly, the friction pad assembly, reaction plate and backup plate. When the brake is applied, the rotating reaction plate is squeezed between the stationary friction pad and the backup plate.
16. Remove the axle housing assembly gasket.

NOTE: Gasket may have remained on the axle housing.
17. Normally, any further disassembly of the brake levers, push rods and etc. is not necessary, nor recommended. The brake lever shim, located between the two brake levers, is used to adjust the brake lever movement. This adjustment was made during the initial transaxle assembly.

Brake Housing Disassembly (Eaton 750 only)

1. Using a 3/8" wrench, remove the four capscrews from the brake cover.

NOTE: Make sure you DO NOT move the brake lever unnecessarily, especially when it is out of the housing assembly. The parking brake assembly incorporates automatic self-adjusting brakes. Unnecessary activation of the lever may cause the brake to expand and make installation of the assembly very difficult or impossible.

2. Remove the brake cover from the housing assembly.
3. Remove the brake assembly from the transaxle housing. Total disassembly of the brake is NOT necessary or recommended.

4. The two outside parking brake disks are the only disks that can be removed easily for inspection and cleaning.

Housing Disassembly (Eaton 750, 751)

1. Reposition the housing assembly. Using a 3/8” wrench, remove the capscrews from the cover assembly.

 NOTE: One of the capscrews is located in the case drain port.

2. With all the capscrews removed, carefully separate and remove the cover from the housing assembly.

3. Use No. 5 or 7 internal snap ring pliers to remove the input shaft retaining ring from the cover.
4. Reposition and support the cover with the input shaft in the down position. Use a plastic hammer or arbor press to remove the input shaft assembly from the cover.

5. Using a screwdriver or similar tool, drive the input shaft seal from the cover.

6. To remove the control shaft seal, reposition the cover. Using a small screwdriver or a similar rod, pry the control shaft seal from the cover assembly.

7. Remove the cover gasket from the housing and discard.

 NOTE: The gasket may have remained on the cover when it was removed.

8. Remove the two buttons from the cam ring assembly.

 NOTE: These buttons may have remained in the cover assembly.

9. Remove the drive from the pump rotor assembly.
10. Remove the control shaft and insert from the housing and cam ring assembly.

11. Remove the cam ring insert from the control shaft.

NOTE: It is essential that the pump rotor assembly remain intact during handling as each ball piston is matched to its respective bore.

12. Install a wide rubber band around the pump rotor to retain the ball piston in their bores. Remove the cam ring assembly from the housing.

13. Carefully remove the pump rotor assembly from the housing, making sure the ball pistons are not dislodged from their bores.

14. Set the pump rotor aside for inspection.

15. The pump and motor journals and cam ring dowel cannot be removed once they have been installed in the housing assembly.

NOTE: Inspect the pump and motor journals for any irregularities. If any are found, the housing must be replaced as a complete assembly.

16. In most cases, we do not recommend removal of the dampening pistons for inspection or cleaning. Normal flushing should be all that is required for cleaning.
17. To remove bypass valve assembly, use a 1" wrench to remove the bypass valve nut from the transaxle case.

18. Remove and discard O-ring from bypass valve nut.

19. Remove bypass valve bracket and spring from transaxle case by sliding out valve nut hole and lifting upward.

20. Remove spring from bypass valve bracket.

21. Remove and discard O-ring from bypass valve bracket.

22. We do not recommend removal of the check valve assemblies for inspection or cleaning; normal flushing should be all that is required to clean the check valves.

23. Reposition the transaxle housing on its side. Using a long drift punch, remove and discard the housing lip seal. Turn housing over and remove opposite lip seal.
Rotor Disassembly and Inspection

1. Inspect the rotor assemblies in the following manner. Remove the piston balls from the rotor, one at a time, working clockwise from the letter stamped in the rotor face. Place the piston balls in a prepared container.

 NOTE: The balls must be replaced in the same bores from which they were removed because they are all select fit. Use a container such as an egg carton or ice cube tray to hold the balls.

2. Check for broken or collapsed springs in the motor rotor assembly.

 Inspect the piston balls. They must be smooth and completely free of any irregularities.

 Inspect the rotor bores, rotor bushing and pintle journals for irregularities or excessive clearance. The ball piston to rotor bore clearance is select fit electronically from .0002 to .0006". When irregularities are noted, replace the complete rotor assembly. Individual ball and spring are not serviceable.

 Install the piston balls in their matching bores. Hold them in place with a rubber band or separate race.

General Reassembly Notes

Before reassembling the transaxle, clean all parts and assemblies with clean solvent and blow dry with compressed air. Inspect and replace all scratched or damaged parts. Replace all gaskets, seals and seal rings. Lubricate all seals and seal rings with petroleum jelly (Vaseline) for retention during assembly. Freely lubricate all bearings and finished part surfaces with clean hydraulic fluid to provide lubrication at start-up.

To ensure correct installation, the axle housings are marked with the letters A and B. Each side of the housing assembly is also marked with an A or B. Make sure the axle housings are correctly assembled with the corresponding letters on the housing assembly.
Housing Reassembly (Eaton 750, 751)

1. Position the housing assembly on its side. Lubricate and install the housing lip seal with the seal lip pointing outward from the housing. Press or drive the seal into the counterbore. Turn the housing assembly over and repeat the same procedure for the other brake shaft seal.

NOTE: Make sure to press only on outer edge of housing lip seal.

2. Lubricate and install O-ring in the groove located on dump valve bracket.

3. Install the spring on the dump valve bracket with the right angle bend of the spring pointing inward, as shown.

4. Install the spring and dump valve bracket in the transaxle housing.

5. The spring is properly assembled when the longest leg points toward the check valve assembly.

6. Lubricate and install the O-ring around the bypass valve nut.

7. Install the nut over the dump valve bracket, into the housing assembly.

NOTE: Make sure you do not damage the bypass valve O-ring during installation.

8. Using a 1" wrench, torque the bypass valve nut to 150 inch pounds.
9. Install the pump and cam ring assembly in the transaxle housing with the flush side of the cam ring facing outward. Remove the rubber band from the pump rotor assembly.

Figure B–63. Install Pump and Cam Ring Assembly

10. Install the cam ring insert on the control shaft pivot dowel.

Figure B–64. Install Cam Ring Insert

11. Install the control shaft assembly, first aligning the cam ring insert with the cam ring assembly, and then with the housing assembly.

Figure B–65. Install Control Shaft Assembly

12. Install the drive pin in the pump rotor assembly, as shown.

NOTE: An alternate method is to install the drive pin on the end of input shaft, and secure with petroleum jelly.

13. To align pump rotor, turn input shaft until gear teeth align.

Figure B–66. Install Drive Pin and Align Pump Rotor
Cover Reassembly (Eaton 750, 751)

1. Lubricate and install the control shaft oil seal with the seal lip pointing inward. Press or drive the seal into the seal counterbore.

![Figure B–67. Install Control Shaft Oil Seal](image)

2. Lubricate and install the input shaft seal with the seal lip pointing inward. Press or drive the seal into the counterbore.

3. Press or drive the input shaft assembly into the cover.

![Figure B–68. Install Input Shaft Seal](image)

4. Install the input shaft assembly retaining ring, making sure it is firmly seated in the retaining ring groove.

![Figure B–69. Install Retaining Ring](image)

5. To help retain the buttons during assembly, apply a small amount of petroleum jelly (Vaseline) to them. Install the buttons in the holes located in the cover assembly.

![Figure B–70. Install Alignment Buttons](image)
6. Install a new cover gasket on the transaxle housing.

7. Install the cover assembly by carefully aligning it with the control shaft, cam ring pivot dowel and pump rotor drive.

NOTE: An alternate method is to turn cover and transaxle housing sideways and slide together.

8. After engaging the control shaft and pivot dowel in the cover assembly, carefully rotate the input shaft to engage the pump rotor drive. When all mating parts are aligned and engaged, the cover assembly should fall into position on the housing assembly.

9. Install the capscrews in the cover assembly and torque to 105 inch pounds.

Note: Capscrews must be carefully threaded into aluminum housing to prevent additional threads from being cut. Rotate capscrews counter-clockwise to align threads.

Axle Installation (Eaton 750)

1. Before installing the parking brake assembly, make sure the brake is in the unlocked position.

NOTE: Make sure you DO NOT move the parking brake lever on 750 transaxle, especially when it is out of the transaxle housing. The parking brake incorporates automatic self-adjusting brakes. Activation of the lever may cause the brake to expand and make installation of the assembly very difficult or impossible.

2. Install the parking brake assembly into the transaxle housing. Align it with the four (4) notches cast in the housing assembly.

NOTE: Make sure the parking brake handle is pointing or leaning towards the cover side of the transaxle housing.
3. To aid in correct installation of the axle housings on the transaxle, the transaxle and axle assemblies are marked with an A and B (only necessary on Model 750). The B side of the transaxle must be assembled first. There are two different brake shaft lengths that are used in the axle housing assemblies. The shorter shaft is always used in the A axle housing. The longer shaft is always used in the B axle housing assembly.

4. Apply a small amount of petroleum jelly to the lip of the transaxle housing seal. Carefully install the longer of the two brake shafts into the B side of the transaxle housing.

 NOTE: Make sure the lip of the transaxle seal is not damaged during installation.

5. Engage the brake shaft splines into the parking brake assembly by aligning and holding the inner disk and thrust bearing with one hand, and rotating the brake shaft slightly with the other hand. Install the other brake shaft.

 NOTE: If properly installed, both brake shafts should turn independently and each shaft will rotate one brake disc.
6. Carefully install the motor rotor assembly onto the motor journal inside the transaxle housing.

 NOTE: If a rubber band was used to retain the ball pistons, remove it at this time.

 Figure B–77. Install Motor Rotor Assembly

7. The first sun gear is longer than the second sun gear.

 First Sun Gear Second Sun Gear

 Figure B–78. First and Second Sun Gears

8. Install the first sun gear into the motor rotor assembly.

 Figure B–79. First Sun Gear Installation

9. Install the two dowel pins and the gasket on the transaxle housing.

 NOTE: There are three identical gaskets used on the transaxle housing.

 Figure B–80. Dowel Pins and Gasket Installation
10. Install the wear plate, bowed side toward the motor rotor assembly, aligning it with the two dowels.
11. Install the second of three gaskets on the wear plate, aligning it with the dowels.

Figure B–81. Install Gasket and Wear Plate

12. Install the ring gear assembly on the transaxle housing, aligning it with the brake shaft and dowels.

NOTE: The two ring gear assemblies are identical and can be installed on either side of the housing assembly. However, when installing the ring gear assembly, the side with the needle bearing must face the axle housing assembly (toward outside, as shown) for additional support.

Figure B–82. Install Ring Gear Assembly

13. Lubricate and assemble the three planetary gears on the primary carrier assembly.

Figure B–83. Assemble Primary Carrier Assembly

14. Install the primary carrier assembly into the ring gear assembly by aligning and engaging it with the previously installed sun gear.

Figure B–84. Install Primary Carrier Assembly
15. Install the second sun gear in the primary carrier assembly.

NOTE: The convex or pointed end of the second sun gear must point inward toward the housing assembly.

16. Lubricate and assemble the three planetary gears on the secondary carrier assembly.

17. Install the secondary carrier, aligning and engaging the three planetary gears with the ring gear assembly and second sun gear.

18. Install the brake gear on the shaft.
19. For retention during assembly, apply a small amount of petroleum jelly (Vaseline) to the spacer. Install the spacer on the shaft and brake gear. (Not used on date code G01J or higher.)

20. Install the third and final gasket on the ring gear assembly.

Axle Housing Reassembly (Eaton 750)

1. Lubricate and install the axle shaft and thrust washers in the axle housing.

2. Position the axle housing assembly with the axle pointing downward. Install the inner thrust washer and axle shaft retaining ring.

3. Reposition the axle assembly with the output end pointing upward. Protecting the lip of the axle seal from the snap ring groove and keyway, lubricate and install the seal with the lip pointing inward towards the axle housing.

4. Using a piece of tubing (1-1/2” O.D. x 6” long), press or drive the seal into the counterbore.
5. Install the sealed ball bearing over the axle shaft, into the counterbore. Using a pair of No. 5 or 7 internal snap ring pliers, install the ball bearing retaining ring in the axle housing.

Figure B–93. Install Retaining Ring

6. Reposition the axle housing assembly and install the large thrust washer on the axle shaft. (Not used on date code G01J or higher.)

Figure B–94. Install Thrust Washer On Axle Shaft

7. Install the B axle assembly, aligning and engaging the axle shaft with the secondary carrier assembly.

NOTE: To aid in installation, the axle housings are marked with the letters A and B. Each side of the housing assembly is also marked with an A or B. Make sure the axle housings are correctly assembled with the corresponding letters on the housing assembly.

8. After installing the axle housing, install the capscrews in the housing and torque them to 125 inch pounds.

NOTE: Repeat the same assembly steps for the other axle.

Figure B–95. Install Axle Housing On Transaxle
9. Reposition the transaxle assembly and install the brake cover by inserting the brake lever through the dust boot.

10. Install the self-tapping capscrews in the brake cover and tighten them until snug.

Axle Housing Reassembly (Eaton 751)

1. Lubricate and install the thrust washer in the axle housing.

2. Lubricate and install the axle shaft into the axle housing.

3. Reposition the axle housing with the output end of axle pointing downward. Install the inner thrust washer and axle shaft retaining ring.

 IMPORTANT: The round-cornered side (die-rolled) side of the retaining ring must point toward the axle housing.

4. Reposition the axle housing with the output end pointing upward. Protecting the lip of the axle seal from the retaining ring groove and keyway, lubricate and install the seal with the lip pointing inward towards the axle housing.

5. Using a piece of pipe or hydraulic tubing 1.5" (38 mm) O.D. x 6" (150mm) long, press the seal into the counterbore.

6. Using a piece of pipe or hydraulic tubing 1.125" (29 mm) O.D. x 6" (150 mm) long, press the ball bearing over the axle shaft and into the axle housing.

7. Using a pair of No. 5 or 7 internal retaining ring pliers, install the ball bearing retaining ring in the axle housing.
8. Lubricate and assemble the three secondary planet gears on the secondary carrier.

9. Aligning the splines, install the secondary carrier assembly on the splined end of the axle shaft located in the housing assembly.

10. Please note that one side of each ring gear has a bevel on one side. This bevel side of the ring gear must be toward the output end of the axle shaft.

11. Install one of the two ring gears into the axle housing. Install by aligning the ears on the outside of the ring gear with the notches in the housing assembly.

12. Rotate the secondary planet gears to align with the secondary ring gear teeth.

NOTE: When ring gear is in alignment, it will drop into place.

13. Shown here are the first and second sun gears for 16:1 and 23:1 gear ratios.

15. Lubricate and assemble the three planetary gears on the primary carrier assembly.

16. Aligning the splines, install the primary carrier assembly on the secondary sun gear.

17. Install the next ring gear into the axle housing. Install by aligning the ears on the outside of the ring gear with the notches in the housing assembly.

NOTE: Rotate the primary carrier assembly and the ring gear will fall into position.

18. Install the primary sun gear into the primary planetary assembly.

19. Lubricate and install the backup plate in the axle housing assembly. Install by aligning the ears with the notches in the axle housing.

20. Aligning the splines, install the reaction plate on the primary sun gear (friction material must be toward backup plate).

21. Aligning the screw holes and notches, install the axle housing gasket on the axle housing assembly.
22. Reposition and clamp the transaxle housing to the bench. Install the motor rotor assembly.

23. Install the friction brake pad into its recess located in the housing assembly.

24. Carefully retain the planetary assemblies in position. Install the axle housing assembly on the housing assembly.

25. Install the axle housing flange screws and torque to 125 lb-in. (14 Nm).

Repeat the above assembly steps for the other axle.

26. Reposition the transaxle and install the gasket, internal filter and valve cover (position metal side of filter toward housing and gasket).

27. Aligning the screw holes, install five (5) flange screws.

28. Torque screws to 125 lb-in. (14 Nm) in a cross pattern.
Installation

1. Install the brake lever bracket assembly and the front transmission support assembly. Apply locktite to both sets of capscrews and torque to 13-18 lb-ft.

2. Install the input pulley and key and secure with the two setscrews.

3. Install the cooling fan with locktite on the capscrew.

4. Install the hydro cam and key over the tapered control shaft. Install the cam spacer, neutral return cam, flat washer and nut. Torque the nut to 15-20 lb-ft.

Note: At this time the transaxle should be filled with SAE 10W-30 weight motor oil through the return port hole. Cover the opening until the hose is installed. Capacity is 69 oz.

5. Place the transaxle on a floor jack and raise just high enough into the frame to install the following:
 - Oil return hose to fitting on top of transaxle
 - Brake rod to brake lever
 - Route drive belt through blades of hydro fan and onto input pulley.

6. Raise the transmission fully into the frame. Install and tighten the axle mounting bolts to 23-27 lb-ft. Secure the front transmission support and torque to 13-18 ft lb.
7. Hook one end of the brake return spring onto the brake rod, and the other end onto the double nut cap-screw in the left rear corner of the frame.

8. Connect the neutral return rod into the neutral return cam and secure with a cotter pin.

9. Hook the drive spring between the idler pivot and the front transmission support.

10. Assemble the shift rod to the speed control lever. Leave the hardware loose for the neutral adjustment to be performed later.

11. Connect the bypass valve lever to the bypass valve shaft.

12. Install the oil intake hose on the intake fitting located on the front right of the transaxle and secure with a hose clamp.

13. Purge the air from the transaxle. Refer to Section 2, “Purging Air From Transaxle”.

14. Check for proper neutral adjustment. Refer to Section 2, “Neutral Adjustments”.

15. Check the brake adjustment. With the foot pedal in the up position, turn the adjusting nut in until it just contacts the brake rod spring without compressing it. Refer to Section 2C, Figure 2C-38, for reference.

16. Check the hydro oil level. Oil should be up to the “cold full” line approximately 1/4” from the bottom of the reservoir. Top off as needed using a good grade of SAE 30 weight engine oil. Run the transmission for a while to test and recheck the oil level.

17. Test drive the tractor to assure proper function of the transmission and all safety devices.
TUFF TORQ K60 HYDROSTATIC TRANSAXLE

General

The Tuff Torq model K60 consists of an axial piston design pump and motor. Both utilize spherical nosed pistons rotating against angled swash plates. The motor drives a pinion shaft, which drives the final differential gear, and rear axles.

The level of cleanliness maintained while repairing the transaxle could affect its performance. Work in a clean area. Before removing transaxle from tractor, steam clean or pressure wash all debris from surrounding area. After disassembly, wash all parts with clean solvent and blow parts dry with compressed air.

Inspect all mating surfaces. Replace any damaged parts that could cause internal leakage. Do not use emery paper, files, or grinders on finished parts.

NOTE: Whenever a transaxle is disassembled, our service policy is to replace all seals. Lubricate the new seals with petroleum jelly before installation. Use only clean, recommended fluid on the finished surfaces at reassembly.

Figure C–1. Tuff Torq K60 Hydrostatic Transmission
Figure C–2. Broadmoor Tuff Torq K60 Hydrostatic Transaxle

1. Seal
2. Ring, Retaining, Int.
3. Ring, Retaining, Ext
4. Washer
5. Bearing
6. Assembly, Cover, Top
7. Ring, Retaining, Ext.
8. Cap, Sealing
9. Nut
10. Washer
11. Drum, Brake
12. Assembly, Brake
13. Capscrew
14. Shaft, Motor
15. Retainer, Thrust Bearing
16. Bearing, Thrust
17. Spring
18. Assembly, Cylinder
19. Fulcrum
20. Packing
21. Shaft, Pump
22. Packing
23. Spring
24. Shaft, Valve, Bypass
25. Arm, Valve, Bypass
26. Case, Center
27. Magnet
28. Packing
29. Plug, 1/4"
30. Bolt
31. Bearing, Thrust
32. Plate, Swash
33. Plate, Thrust
34. Bearing, Thrust
35. Plate, Thrust
36. Packing
37. Assy. Shaft, Control
38. Ring, Backup
39. Packing
40. Valve, Bypass, Fwd.
41. Ring, Backup
42. Valve, Bypass, Rev.
43. Assy., Block, Pivot
Figure C–3. Tuff Torq K60 Hydrostatic Transaxle

1. Seal
2. Bearing
3. Shaft, Axle, Right
4. Bushing
5. Collar
6. Ring, Retaining
7. Shaft, Axle, Left
8. Gear, Differential
9. Washer, Thrust
10. Pinion
11. Shaft, Pinion
12. Gear
13. Bearing
14. Shaft, Pinion, Final
15. Gear
16. Washer
17. Bushing
18. Assembly, Filter, Oil
19. Screw, Self-Tapping
20. Packing
21. Connector
22. Packing
23. Plug
24. Bolt
25. Bolt
26. Washer, Seal
27. Screw, Self-Tapping
28. Housing, Lower
TUFF TORQ K60 HYDROSTATIC TRANSMISSION REPAIR

Removal

1. Place drain pan under transmission. Remove drain plug at bottom of differential housing. Replace seal washer on drain plug before reinstalling.

2. Remove the seat deck. (See Seat Deck Removal)

3. Elevate the rear end. (See Elevating Rear End for Safe Service)

4. Remove the rear wheels. (See Rear Wheel Removal)

5. Loosen the seat supports and slide the fuel tank forward.

 NOTE: The fuel line does not have to be disconnected.

6. Remove the fan from the input shaft pulley.
9. Remove the springs from the rear of the cam assembly. (There may be one or two springs.)

10. Remove the cotter pin and washer from the end of the brake rod. Disconnect the brake rod from the brake assembly.

11. Remove the spring from the free wheel lever.
12. Remove the drive spring from the hydro support.

13. Remove the hydro drive belt.

14. Remove the cotter pin and washer holding the neutral return rod to the actuator assembly.
15. Remove the bolt from the shift control rod.

Figure C–12. Remove Shift Control Rod Bolt

16. Remove the capscrew from the torque strap.

Figure C–13. Remove Torque Strap

17. Position a jack under the transaxle. Remove the capscrews from each side of the axle assembly holding the transaxle to the frame.

Figure C–14. Remove Mounting Capscrews
18. Remove the cap from the expansion chamber reservoir to clear the frame. Slowly lower the jack to remove the transaxle from the frame. Once removed, replace the cap.

Figure C–15. Remove Transaxle From Frame

19. Remove the pulley, cam assembly, and support rods.

NOTE: When reinstalling input pulley, new setscrews must be used. The setscrews have a special soft end and cannot be reused.

NOTE: Early models do not have a snap ring retaining the top of the pulley used by later models. For either model, install a snap ring during reassembly.

Figure C–16. Remove Pulley, Cam Assembly, Rods
Disassembly

1. Remove expansion chamber reservoir from the transaxle housing. Turn the transaxle upside down and support on a suitable stand.

2. Remove the three bolts holding the brake cover to the transmission housing.

3. Remove the snap-ring and brake drum from the motor shaft.

4. Inspect the brake assembly and brake drum for wear or damage. Replace if excessive wear of any part is noted.

NOTE: The brake drum and brake assembly must be free of oil and dust. If oil is present on brake components, the seal on the motor shaft may be suspect. Replace the seal if oil leakage is evident at the shaft seal.

NOTE: The brake band and brake cover are serviced as an assembly.
5. Remove the nineteen case bolts from the bottom of the transaxle.

NOTE: There are three different lengths of capscrews used to hold the transaxle halves together. There is also a center capscrew that must be removed. Refer to Figure C–25.

6. Separate the transaxle case halves by carefully prying the case halves apart with pry bars at the pry points.

NOTE: Sealant will make separation of the case halves difficult. Do not damage the case halves with pry bars. Before using unnecessary force, make sure all mounting bolts have been removed.

7. Carefully lift the case half from the transaxle assembly.

8. Remove filter and two seals from center case. The filter should be replaced for reassembly.
9. Remove the pivot arm from the bypass shaft.

10. Remove the two push pins, springs and valves from the center case.

11. Remove the axle shaft assembly and differential gear assembly.
12. Remove the final pinion assembly.

13. Remove the three capscrews and magnet from the center case assembly.

NOTE: Clean the magnet by blowing clean with compressed air. Eye protection must be worn when using compressed air to prevent personal injury.

NOTE: Use care when removing the center case to prevent damage to the center case and the cylinder blocks.

14. Slowly and carefully begin to pry center case assembly, cylinder block, and motor shaft up from transaxle housing. The piston assembly is spring loaded and must be held firmly to prevent damage.

NOTE: Use caution not to damage cylinder block or center case. If either is damaged, center case, pump cylinder block and motor cylinder block should be replaced as a set.
15. Remove the motor shaft assembly and the center case sub-assembly.

![Figure C–29. Remove Center Case Assembly](image)

16. While holding pistons into pump cylinder block with your fingers, remove the cylinder block from the pump input shaft.

![Figure C–30. Remove Pump Cylinder Block](image)

17. Using a feeler gauge, measure the clearance between the swash plate and the shift blocks.
 - Clearance: 0–0.008" (0–0.2 mm)
 - Wear limit: 0.012" (0.3 mm)

Note: An excess amount of clearance at these points can make it difficult or impossible to adjust neutral.

![Figure C–31. Measure Shift Block Clearance](image)
18. Remove the spring and retaining ring from the input shaft.

19. Remove the swash plate assembly.
20. Inspect swash plate assembly for wear or damage. Replace if required.

21. Remove the two shift blocks from the control shaft.
22. Inspect the shift blocks for wear or damage. Replace if necessary.
23. Remove the two swash plate bearings from the housing.

24. Inspect the swash plate bearings for wear or scoring.

25. Measure the thickness of the bearings:
 - Thickness: 1.45–1.55 mm (.057–.061")
 - Minimum thickness: 1.30 mm (.051")

26. Unhook the control shaft centering spring from the fulcrum pin.

27. Remove the centering spring from the control shaft.
27. Turn the transaxle case over and remove the retaining ring on the control shaft.

28. Remove the control shaft from the case.

29. Remove the fulcrum pin nut and washer.
30. Remove the fulcrum pin from the transaxle case.

Figure C–41. Remove Fulcrum Pin From Case.

31. Remove the cotter key from the bypass shaft.

32. Remove the bypass shaft and spring from the transaxle case.

Figure C–42. Remove Bypass Shaft

33. Remove the small retaining ring from the input shaft (above case seal).

34. Remove the input shaft seal using care not to damage the transaxle case.

35. Remove the large retaining ring (under seal) holding the shaft bearing in place.

Figure C–43. Remove Retaining Rings and Seal
37. Remove the input shaft and bearing from the case.

38. Remove the retaining ring and washer from each side of the input shaft bearing.

39. Press the bearing off of the input shaft. Inspect the splines and bearing surface for damage.

40. Replace needed parts and reassemble as follows:
 - Install one retaining ring and washer.
 - Press bearing down to the washer.
 - Install other washer and retaining ring.

41. Remove the bearing, bushing, washer and final shaft gear from the pinion shaft previously removed from the transaxle.

 NOTE: It is normal for the gear to have some play on the pinion shaft.

42. Inspect and measure the bearing, bushing, washer, gear and final pinion shaft for wear or damage. Replace if necessary:
 - Bushing ID: 0.593–0.596" (15.05–15.13 mm)
 - Shaft OD: 0.589–0.590" (14.97–14.99 mm)
 - Clearance: 0.002–0.006" (0.06–0.16 mm)
 - Clearance (Max): 0.020" (0.5 mm)
43. Remove the left and right axle shaft assemblies from the differential pinion gear assembly.
44. Inspect the differential gears and thrust washers for wear or damage.

45. Remove the differential pinion shaft and two differential pinion gears from the inside large axle gear.
46. Inspect the differential pinion gears and shaft for wear or damage.
47. Measure the pinion shaft and gears. Replace worn parts as needed:
 - Pinion Gear ID: 0.589–0.590" (14.96–14.99 mm)
 - Pinion Shaft OD: 0.592-0.593" (15.03–15.06 mm)
 - Clearance: 0.002–0.004" (0.04–0.10 mm)
 - Clearance (Max): 0.012" (0.5 mm)

48. Remove the snap-ring from the axle shaft. Remove the collar, bushing, bearing and seal from each axle shaft.
49. Inspect all parts for wear or damage. Replace if required:
 - Axle Bushing ID: 22.06–22.15 mm (0.868—0.872")
 - Axle Shaft OD: 21.98–22.00 mm (0.865–0.866")
 - Clearance: 0.06–0.17 mm (0.002–0.007")
 - Clearance (Max): 0.5 mm (0.020")
50. Replace seal for assembly.
51. Remove the center case from motor shaft.

NOTE: Use care when removing the center case to prevent damage to the center case and cylinder blocks.

![Figure C–50. Remove Center Case](image)

52. Remove the two sleeves, back-up rings, packings, balls, ball holders, springs, and retainers from the center case. Keep all the parts in proper order and do not switch parts side to side.

NOTE: If the bypass valve components cannot be removed, flushing the components will be sufficient cleaning.

NOTE: Be careful not to damage the cylinder block or center case. If either is damaged the center case, pump cylinder block and motor cylinder block should be replaced as a set.

![Figure C–51. Remove Bypass Valve Components](image)

53. Inspect the center case for wear or damage.

![Figure C–52. Inspect Center Case](image)
54. Remove the motor cylinder block assembly from the motor shaft.

55. Remove the five pistons, washers, and springs from the motor cylinder block.

56. Inspect the cylinder block and pistons for wear or damage. Replace if necessary.
56. Remove the spring from the motor shaft.

57. Remove the thrust ball bearing assembly. Inspect the bearing for wear or damage.

58. Remove the snap-ring, washer, bearing and seal from the motor shaft. Replace seal before assembly.

59. Inspect the motor shaft for wear or damage. Replace if necessary.

60. Remove the five pistons, washers and springs from the pump cylinder block.

61. Inspect the cylinder block and pistons for wear or damage. Replace if necessary.

NOTE: Be careful not to damage the cylinder block or the center case. If either is damaged, the center case, pump cylinder block and motor cylinder block should be replaced as a set.
Assembly

1. Apply the grease to two sealing caps and install the caps into the upper case.
2. Apply grease and install new packing on the 9/16” plug. Install the plug into case.

3. Install the new packing and spring to by-pass shaft.

4. Apply grease to the packing and shaft and install into the transaxle case.

Figure C–57. Install Sealing Caps

Figure C–58. Bypass Shaft Packing and Spring

Figure C–59. Install By-Pass Shaft
5. Apply grease to the fulcrum arm and install new packing.
6. Install the fulcrum arm into the case.

7. Install the washer and nut on the fulcrum shaft. Snug the nut but do not tighten at this point.

8. Apply grease to the control shaft and install new packing.
9. Install the torsion spring as shown, and install the control shaft into the transaxle case.
10. Install the retaining ring on the control shaft on the outside of transaxle
11. Spread the torsion spring out over the fulcrum pin as shown.

![Figure C–63. Install Torsion Spring](image)

12. Install the input shaft into the transaxle case, and secure with a retaining ring.

![Figure C–64. Install Input Shaft in Case](image)

13. Wrap tape over the splines of input shaft. Apply grease to the shaft, tape, and lip of the input shaft seal.

14. Install the seal over the tape using care not to damage the lip of seal. Drive the seal into housing applying force only to the outside edge of the seal.

![Figure C–65. Install Input Shaft Seal](image)
15. Install the swash plate bushings into the transaxle case. Apply transmission fluid generously to the bushings when installed.

![Figure C–66. Install Swash Plate Bushing](image)

16. Apply petroleum jelly to the inside of the shift blocks and install the blocks on the control shaft.

![Figure C–67. Install Shift Blocks](image)

17. Install the thrust bearing into the swash plate as shown. Apply transmission oil generously to all parts.

NOTE: Be sure to install the thin race first inside the fixed swash plate.

![Figure C–68. Install Thrust Plate](image)
18. Install the swash plate over the pump shaft and set into the case on the swash plate bushings. Be sure to align the shift blocks in the groove of the swash plate. Apply transmission oil to all parts.

19. Using a feeler gauge, check the clearance between the shift blocks and the swash plate.
 Clearance: 0–0.008” (0–0.20 mm)
 Clearance (max.): 0.012” (0.3 mm)
 An excess amount of clearance at these points can make it difficult or impossible to adjust neutral.

20. Install the retaining ring on the input shaft.
21. Install the pump spring on the input shaft.
22. Clean, lubricate and install the five springs, washers and pistons in the pump cylinder block. The pistons can be installed in any of the ports of the cylinder block.

23. Install the cylinder block onto input shaft with the pistons making contact with the thrust bearing retainer. Make sure the pistons do not fall out of the block and become damaged during installation.

24. Apply clean transmission fluid to all assembled parts.

25. If the motor shaft bearings were removed, install the bearing, washer, and retaining rings, on the shaft.

26. Apply grease to the lip of the new seal and install on the shaft.
27. Apply clean transmission fluid to the motor thrust bearings and retainer.
28. Assemble three pieces of thrust bearing, and install into retainer.

NOTE: Install thin race first inside swash plate.

![Figure C–75. Assembly Thrust Bearings](image)

29. Install the motor shaft through the retainer.
30. Install the motor shaft spring.

NOTE: Install the motor shaft retainer rings if not previously installed.

31. Clean and apply clean transmission fluid to the motor piston components.
32. Install the five springs, washers, and pistons to the motor cylinder block.
33. Install the motor cylinder block on the motor shaft. Be sure pistons do not fall out of the block and become damaged during installation.

![Figure C–76. Install Motor Shaft Through Retainer](image)

![Figure C–77. Install Motor Cylinder Block on Shaft](image)
34. If the center case motor and pump shaft bushings were worn or damaged, install new bushings and center case. Bushings are serviced with the center case and are not available separately.

35. Install new dowel pins in the center case as shown.

36. Apply grease to packings. Apply clean transmission fluid to all other parts before assembly.

37. Install two guides, light duty springs, ball retainers, balls, new packings, back-up rings and sleeves in center case. Seat the sleeves firmly into the center case. Parts A, B, and C may be left off until after center case is installed.

NOTE: Do not switch the forward and reverse sleeves as reverse sleeve has a drilled orifice.

NOTE: Check the check ball movement after assembly.

38. Apply clean transmission fluid to the motor assembly and install the motor shaft and piston assembly into the center case.
NOTE: Use extreme care while installing the motor and center case assembly into the upper case. Do not damage the motor or pump contacting surfaces. Apply clean transmission oil to all surfaces (except outside of seal) before installation.

39. Install the center case assembly into the upper transaxle case as follows.
 - Apply silicone sealer into the double groove of the upper transaxle case where the motor shaft seal installs.
 - Turn the motor swash plate so that the smooth surface faces up. The side with the two recesses should be facing down at this point.
 - Simultaneously compress the springs of both the motor and pump cylinder blocks
 - Align the pump cylinder block with the splines of the input shaft
 - Align the ball bearing of the motor shaft with the bearing bore in the transaxle case.
 - Align the motor shaft seal with the bore in the case.
 - Drop the dowel pins from the center case into the alignment holes of the transaxle case.

41. Press bearing on final pinion shaft.
42. Install gear, washer, and bushing to final pinion shaft.
43. Install the final pinion shaft into the transaxle case.

NOTE: Be sure flats of final pinion shaft bushing are facing up and down when seated into case.

NOTE: The large gear will have a bit of side-to-side wobble; this is normal. The bevel teeth on the large gear may face either direction.

44. Install the new seals and bearings on the left and right axle shafts (right axle shown).

NOTE: Apply grease to the lip of the seal, and install from the smaller end of the axle shaft.

45. Install the bushing, collar (stepped notch of collar faces center of transaxle), and retaining ring to left and right axle shafts.

46. Install the differential gear and thrust washer to the left and right axle shafts.
47. Install the two differential pinions to the pinion shaft.

Figure C–87. Install Pinion Gears

48. Install the pinion assembly into the center of the axle gear.

Figure C–88. Assemble Pinion Gears

49. Install the assembled axle shafts to the differential gear assembly. Stand one axle on end to assemble the differential. If the differential does not rotate freely, check the position of the thrust washers.

Figure C–89. Assemble Axles to Gear
50. Apply silicone sealant in double grooves of transaxle case bore where left and right axle seals contact case.

51. Install axle assembly into transaxle case being sure seals and bearings drop into proper bores in case.

52. Turn bushings on left and right axle shafts so that machined flats are facing up and down to match flats on transaxle case. Turn the axle by hand to make sure all gears turn properly.

53. Install bypass valves, caps, pins and springs if not previously done.

54. Install bypass arm on pin on bypass shaft. Check for free movement of arm and pins into pump.
57. Apply clean transmission fluid to the filter and filter seals. Install seals on the filter and install the filter in the groove of the center case.

58. Apply silicone sealant to the lower half of the transaxle case being sure of the following:
 - Case half is clean of all old sealant and oil.
 - Sealant is applied to inside edge of mating flange at bolt holes.
 - Sealant is applied to double grooves of machined bores where left and right axle seals and final pinion shaft seal contacts case.
 - Sealant is applied around bolt hole located in center of transaxle case.

NOTE: Before installing the case cover, recheck the bushings on the axle shafts and final pinion shaft to make sure machined flats are facing the flat face of the case.

59. Install the lower case on the upper case.

60. Install nineteen capscrews in the transaxle case. Rotate the capscrews backwards to index the capscrew's threads with the existing threads in the cased to prevent cutting new threads. Start the capscrews by hand. Do not forget the center capscrew. Torque the capscrews starting from center and working outward.

 Transaxle Case Torque:
 - New Case: 20–23 ft-lb.
 - Used Case: 16–18 ft-lb.
61. Install a new seal on the transaxle drain plug and install the plug into the case.
 Drain Plug Torque: 9–12 lb-ft.

62. Clean oil from the brake shaft and install the brake drum and snap ring. See Figure C–103.

63. Install the brake assembly with three capscrews and washers.
 Brake Mounting Capscrews Torque: 16–21 lb-ft.

64. Install the control lever cam plate.
 Control Shaft Capscrew Torque: 70–80 in-lbs.

65. Install the input shaft pulley bottom retaining ring, pulley, top retaining ring, and setscrew.
 Pulley Setscrew Torque: 90–100 in-lbs.

66. Install the expansion chamber, connector hose, spring clips, reservoir, and cap.

67. Remove the air vent cap (Figure C–104) and slowly pour SAE 10W-30 motor oil into the expansion chamber until oil comes out of the vent.

68. Replace the vent cap and fill the expansion chamber to the “Full Cold” mark.
Installation

1. Place the transaxle on a floor jack. Remove the expansion chamber cap and center the transaxle under the rear of the frame.

2. Connect the return to neutral linkage to the cam plate as the transaxle is raised into tractor.

3. Install the four mounting capscrews and nuts.

4. Install following components:
 - torque strap
 - free wheel lever spring
 - shift control rod
 - hydro drive belt
 - brake rod
 - control cam return spring
 - neutral return rod
 - hydro drive spring
 - input shaft fan
 - rear wheels

5. Purge air from the transmission. See “Purging Air from Transaxle”
HYDRO-GEAR 310-0750 & 310-0800

General

The Hydro Gear 0750/0800 uses a 10cc variable displacement pump and a 21cc fixed displacement motor. The variable pump features a cradle swashplate with direct-proportional displacement control. Reversing the tilt of the swashplate reverses the flow of oil to the motor, which changes the direction of motor rotation.

The pump and motor are of the axial piston design, and both have spherical nosed pistons which are held against a thrust race by internal compression springs.

The fluid supply for the hydrostatic transaxle is contained within the housing and drawn through an integral filter before entering the pump. Two check valves are used to direct excess flow to the low pressure side of the loop.

IMPORTANT: Cleanliness is a primary means of assuring satisfactory life on new or repaired units. Cleaning parts by using a solvent wash and air drying is usually adequate. As with any precision equipment, all parts must be kept free of foreign materials and chemicals.

- Protect all exposed sealing surfaces and open cavities from damage and foreign material.
- Prior to removing and disassembling the transaxle, the tractor should be steam cleaned or blown with compressed air before beginning any repairs.
- It is recommended that all seals be replaced before transaxle is reassembled. Lightly lubricate all seals with a clean petroleum jelly prior to assembly.
- After the transaxle is removed from the tractor, remove all external components such as the brake arm, brake actuating pins, control arm, cooling fan, input pulley, and frame mounting hardware before separating the case halves.

Figure D–1 Hydro-Gear Model 0750/0800 Hydrostatic Transaxle
Figure D–2 Hydro Gear Model 750 Hydrostatic Transaxle
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>WASHER, 7/16 x 1 x 1/2</td>
<td>32</td>
<td>1</td>
<td>BLOCK, Cylinder</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BALL BEARING (Model 311-0800)</td>
<td>33</td>
<td>1</td>
<td>ACTUATOR, Bypass</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>SEAL, Lip</td>
<td>34</td>
<td>1</td>
<td>CENTER SECTION ASSY. (Model 311-0800)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>RETAINING RING</td>
<td>35</td>
<td>1</td>
<td>SEAL, Lip</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>ARM, Bypass</td>
<td>36</td>
<td>1</td>
<td>RETAINING RING</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>SEAL, Lip</td>
<td>37</td>
<td>2</td>
<td>WASHER, 17/64 x 23/64 x 1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>SETSCREW</td>
<td>38</td>
<td>1</td>
<td>ELEMENT, Oil Filter</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>ARM, Control</td>
<td>39</td>
<td>1</td>
<td>BOLT, 5/16-18 x 1-3/4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>PIN, Actuating</td>
<td>40</td>
<td>4</td>
<td>BRAKE ROTOR/STATOR KIT</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>NUT, Hex, Lock, 5/16-24</td>
<td>41</td>
<td>1</td>
<td>DIFFERENTIAL ASSY.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>SEAL, Lip</td>
<td>42</td>
<td>2</td>
<td>WASHER, 3/4 X 1-1/2 X 1/32</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>RETAINING RING</td>
<td>43</td>
<td>2</td>
<td>SEAL, 3/4 X 1-1/4 X 1/4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>ARM, Actuating</td>
<td>44</td>
<td>1</td>
<td>SHAFT, Input</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>CASTLE NUT, 5/16-24</td>
<td>45</td>
<td>21</td>
<td>BOLT, 1/4-20 x 1-3/8</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>PUCK, Dampener</td>
<td>46</td>
<td>2</td>
<td>PIN, 1/2 O.D. x 7/16 I.D. x 3/4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>DRIVE PIN</td>
<td>47</td>
<td>1</td>
<td>JACK SHAFT/PINION GEAR ASSY. (Incl. Ref. Nos. 1, 48, 49 & 60)</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>SPRING, Extension</td>
<td>48</td>
<td>1</td>
<td>JACK SHAFT</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>STUD, 5/16-24</td>
<td>49</td>
<td>2</td>
<td>CAPSCREW, 6 mm x 13/64</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>SPRING, Compression</td>
<td>50</td>
<td>6</td>
<td>SEAL, Wiper</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>HOUSING, Lower</td>
<td>51</td>
<td>1</td>
<td>SPRING, Block</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>HOUSING, Upper</td>
<td>52</td>
<td>1</td>
<td>WASHER, Block Thrust</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>RING, Wire</td>
<td>53</td>
<td>1</td>
<td>VENT CAP ASSY.</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>BALL BEARING, Shaft</td>
<td>54</td>
<td>1</td>
<td>FITTING & O-RING ASSY.</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>BEARING, Cradle</td>
<td>55</td>
<td>1</td>
<td>SHAFT, Motor (Model 311-0750)</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>BEARING, Thrust</td>
<td>56</td>
<td>2</td>
<td>SLEEVE BEARING (Model 311-0750)</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>SWASHPLATE</td>
<td>57</td>
<td>1</td>
<td>CENTER SECTION ASSY. (Model 311-0750)</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>BLOCK, Cylinder</td>
<td>58</td>
<td>1</td>
<td>COTTER PIN</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>GUIDE, Slot</td>
<td>59</td>
<td>1</td>
<td>WASHER, 7/16 x 7/8 x 51/64</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>SHAFT, Motor (Model 311-0800)</td>
<td>60</td>
<td>1</td>
<td>PINION GEAR (See Ref. No. 47)</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>BEARING, Thrust</td>
<td>31</td>
<td>1</td>
<td>BEARING, Thrust</td>
</tr>
</tbody>
</table>

7 Transmission Repair

7D Hydro-Gear 0750 / 0800
Removal

1. Remove the seat deck. (See Seat Deck Removal)
2. Elevate the rear end. (See Elevating Rear End for Safe Service)
3. Remove the rear wheels. (See Rear Wheel Removal)

4. Loosen the seat supports and slide the fuel tank forward.

NOTE: The fuel line does not have to be disconnected.

5. Remove the fan from the input shaft pulley.

8. Remove the belt guide bolt and left mounting strap from the left side of the frame.
9. Lift the drive belt from the input shaft pulley.

 NOTE: It may be necessary to remove the belt from the clutch pulley to slacken the belt before removing it from the input shaft pulley.

10. Remove the torque strap mounting bolt from the right side of the frame.

11. Release the parking brake. Remove the cotter key and washer holding the brake rod to the transaxle brake lever.

12. Remove the nut, lock washer, flat washer, spacer, and bolt, holding the shift rod to the control lever on transaxle.
13. Place a jack under the transaxle. Remove the axle mounting bolts from the left and right side of the frame.

![Figure D–8 Remove Mounting Bolts](image1)

14. Lower the transaxle to ground making sure that the mounting straps and linkages clear the frame.

![Figure D–9 Remove Transaxle](image2)

15. Remove all external components from transaxle case:
 - Brake Arm
 - Brake Actuating Pins
 - Hydrostatic Control Arm
 - Cooling Fan (if not previously done)
 - Input Shaft Pulley
 - Bypass Valve Actuating Lever
 - Case Vent Hose
 - Frame Mounting Hardware
Disassembly

1. Drain transaxle oil by removing the breather hose assembly and positioning the transaxle so the breather port is at lowest point of transaxle to allow oil to drain thoroughly.

2. Remove the nut (A, Figure D–10) securing the brake arm and remove the brake arm.

3. Position the transaxle upside down and secure it to the bench to provide access to the twenty housing assembly cap screws.

4. Remove the capscrews.

NOTE: Prior to October 27, 1993, a 3/16" drive internal hex head cap screw was used. At the time, a change was made to an “E-8” external drive “Torx” cap screw.

5. Separate the two housing halves by applying pressure with two large straight blade screwdrivers. Use caution to prevent damage to the mating sealing surfaces as you separate the two halves.

NOTE: The sealant will make the two halves difficult to separate.

6. Remove the bottom case half from transaxle. All components should remain in the top case half.

CAUTION: The axle/differential assembly may stick as the lower housing is being lifted off the upper housing.

7. Inspect the lower case half for damage. Inspect the axle journal bearing pockets for excessive wear. Inspect the brake rotor/stator pocket for excessive wear.

NOTE: Prior to reassembly, the lower housing must be thoroughly cleaned and all the old sealant must be removed.
8. Lift the axle/differential assembly out of the upper housing.

NOTE: It will be necessary to remove any burrs or rust from the axle ends prior to the removal of the two bronze bearings. Burns and rust will damage the bearings.

NOTE: The 0800 model uses ball bearings to support the axle shaft. Ball bearings can be used in the 0750 if desired.

9. Remove the two bronze journal bearings, four lip seals and two flat washers from the axle ends.

NOTE: The lip seals must not be re-used during reassembly.

10. Model 0750: Inspect the bronze bearings for excessive wear. The bearings should be 0.754" to 0.756".

Model 0800: Inspect the ball bearings for excessive play.

11. Inspect the axle ends for damage or excessive wear. The axle ends should be 0.749" to 0.750".

12. Inspect the differential bevel gears by rotating the axle ends.

13. Inspect the final drive gear teeth for excessive wear or damage.

14. Check the differential assembly screws for proper torque. They should be torqued to 12-14 ft. lbs.

15. Inspect the journal bearings inside the differential housing for excessive wear by feeling the shafts for an unreasonable amount of play.

16. If excessive wear or damage has been found, the complete assembly must be replaced.
17. Remove the brake rotors and stators by sliding one at a time off the end of the splined motor shaft.
18. Inspect each side of both rotors for excessive wear or damage.
19. Inspect the rotor’s internal splines for excessive wear or damage.
20. Replace rotors and stators as a complete kit if excessive wear or damage is found. Inspect all other mating parts.

21. Remove the oil filter. After inspecting the filter for unusual particles that it may have trapped, dispose of it properly and replace it with a new oil filter during reassembly.

22. Using a 9/16” socket, remove the three assembly bolts retaining the center section in the upper housing. The bolts are Lock-tite-ed in and may require the use of a breaker bar to loosen.

CAUTION: The pump and motor piston springs may push the center section assembly out of position while you remove these bolts.

23. Remove the center section assembly from the housing. The pump block assembly should remain in the upper housing on the input shaft, but may stick to the center section.

23a Check the check valve plate bolt torque, but do not remove. Two styles of check plates have been used, one has three bolts while the other has four. The plate with four bolts should be torqued to 170 to 240 in-lbs., while the plate with three bolts should be torqued to 135 to 185 in-lbs.

NOTE: The model 0800 has no check valve plate.

CAUTION: The aligning pins, motor shaft, bypass plate, pump block and motor block assemblies are NOT retained to the center section or the upper housing and may become separated from the assembly during removal.
24. Remove the motor block assembly from the motor shaft and inspect for unusual wear or damage. The pistons should fit with very little side clearance in the block bores, but must slide freely.

NOTE: The correct bore diameter for the block is 0.6776” to 0.6784” and the pistons should be 0.6767” to 0.6770”.

25. Remove the motor shaft, washers and bypass plate from the center section and inspect for unusual wear or damage.

NOTE: Be careful not to lose the bypass plate

26. Inspect the center section running surfaces for unusual wear or damage.

27. Remove the pump block assembly, block thrust washer and spring from the input shaft and inspect for unusual wear or damage. The pistons should fit with very little side clearance in the block bores, but must slide freely.

NOTE: The correct bore diameter for the block is 0.6295” to 0.6303” and the pistons should be 0.6288” to 0.6291”.

28. Remove the two internal hex head cap screws retaining the jackshaft to the housing with a 5 mm hex wrench and remove the jack shaft/pinion gear assembly from the housing.
29. Inspect the jackshaft running surface for excessive wear or damage. The jackshaft should be 0.4986" to 0.4996".

30. Inspect the pinion gear bore for excessive wear or damage. The bore should be 0.5014" to 0.5024".

31. Inspect the pinion gear teeth for excessive wear or damage.

32. If excessive wear or damage was found, the complete assembly should be replaced.

33. Remove the motor thrust bearing assembly, swash-plate kit and cradle bearings from the housing and inspect for unusual wear or damage.

34. Remove the slot guide block from the displacement control shaft.

35. Remove the bypass actuator from the housing.

36. Reposition the housing and remove the input shaft lip seal from the housing bore. A hook type tool may be used to pry the seal out. Care must be taken to avoid damage to the housing bore, shaft sealing surface or bearing. Once removed, the seal is not to be reused.

37. Remove the input shaft bearing retaining ring.

38. Remove the pump and input shaft assembly from the transaxle housing.

39. Inspect the shaft and bearing for unusual wear or damage.

40. Reposition the housing and remove the displacement control shaft and lip seal.

41. Inspect the housing for damage.
Assembly

Important Notes:

All parts should be thoroughly cleaned in a suitable solvent. All sealant material MUST be removed from the housing halves prior to reassembly.

Inspect all parts for damage, nicks or unusual wear patterns. Replace all parts having unusual, excessive wear or discoloration.

Inspect the sealing surfaces, bearing surfaces and shaft spline. Polish the sealing areas on the shafts, if necessary. Replace any worn or damaged parts.

The running surfaces of the cylinder blocks MUST be flat and free from scratches. If scratches or wear are found on the running surface of the cylinder block or center section, polish or replace the parts. When polishing these surfaces, up to 0.0004 in. may be removed. If this is not sufficient to obtain a flat surface free of scratches, the part should be replaced.

Clean and lightly oil parts prior to assembly of the transaxle.

WARNING

Most parts have critical tight tolerance surfaces. Care must be exercised to prevent damage to these surfaces during assembly. Protect exposed surfaces, openings and ports from damage or foreign material.

NOTE: Be sure to torque all threaded parts to the recommended torque levels and replace all o-rings and shaft seals.

1. Install the displacement control shaft. See Figure D–26.

2. Install the pump input shaft assembly and retaining ring into the housing. See Figure D–27.

3. Install the pump shaft lip seal.

4. Reposition the upper housing and install the swashplate cradle bearings.

5. Install the slot guide block onto the displacement control shaft.

6. Install the swashplate assembly into the housing. The slot on the swashplate must engage the slot guide block on the displacement control shaft. Use a tool such as a screwdriver to hold the guide block in position while installing the swashplate.

NOTE: Be sure the thick race of the pump thrust bearing is toward the pistons.

7. Install the thrust washer and pump block spring onto the pump shaft.
NOTE: To simplify the installation of the pump block, wrap a rubber band snugly around the pistons. This is intended to hold the pistons in their bores as the block kit is handled during installation.

8. With the swashplate in the neutral (0 angle) position, lubricate the running surfaces and install the cylinder block assembly onto the pump input shaft. Make sure the splines engage properly.

![Figure D–29. Cylinder Block Kit with Rubber Band](image)

9. Install the pinion gear and washers onto the jackshaft. Install the jackshaft assembly into the housing and torque the bolts to **120 in. lbs. to 170 in. lbs.** Use Loc-Tite solution on the bolts.

![Figure D–30. Jackshaft Assembly Installation](image)

10. Install the aligning pins (A, Figure D–31) and the bypass actuator into transaxle housing. Align the straight edge (C) of the bypass actuator (B) with the casing boss (D) or the bypass plate will be damaged.

![Figure D–31. Install Aligning Pins & Bypass Actuator](image)

<table>
<thead>
<tr>
<th>A. Alignment Pins</th>
<th>B. Bypass Actuator</th>
<th>C. Straight Edge</th>
<th>D. Casing Boss</th>
</tr>
</thead>
</table>

7 - 91
11. Install the washers and a new lip seal onto the motor shaft. Install one washer on each side of the retaining ring.

12. Install the motor shaft into the center section.

13. Install the bypass plate (small end first) into the center section.

14. Lubricate the running faces and install the motor block kit onto the motor shaft.

15. Position the washers and seal and install the center section assembly onto the aligning pins and pump input shaft.

Note: Be sure the center section is completely seated by hand. Do not pull the section down with the capscrews. If the center section cannot be be pushed down by hand, remove the center section and check the alignment of the bypass actuator; otherwise damage to the bypass plate will occur.
16. Insert the three assembly bolts into the center section and press the center section down onto the aligning pins and pump input shaft until it is seated on mounting bosses. While holding the center section in position, torque the bolts evenly from 525 in-lbs. to 700 in-lbs.

NOTE: Treat the bolts with Loc-Tite solution.

17. Install the motor thrust bearing (with the thicker race towards the pistons) by compressing the piston springs and sliding the bearing assembly into place.

NOTE: Use a wide, thick putty knife (or equivalent) to compress the pistons and allow the bearing to be installed.

18. Fill the axle pockets of the upper housing with Chemplus grease—part number 1714286 (Inside of bearing location.)

NOTE: Do not overfill, and wipe off any excess grease or sealant will not cure properly.

19. Install the washers and seals onto the differential/axle assembly and align them for installation.

20. Install the differential/axle assembly into the housing.

21. Install a new filter onto the center section/check valve plate.
22. To install brake disks, first install a stator, then a rotor (hub to inside), then a stator, then a rotor (hub to inside), then two stators. See Figure D–43.

23. Install the brake bolt (with nut) into the upper housing. At this time make sure the pump and motor rotate freely.

24. Apply sealant as shown in the example.

 `NOTE: The drawing may not be the same as the original factory sealant application, but is the currently recommended pattern. Apply sparingly.`

 `NOTE: Sealant must be of good quality, oil and heat resistant such as RTV or silicon.`

25. Position the lower housing on the upper housing and secure with capscrews. Torque capscrews to **135-165 in-lbs.** in the sequence shown in Figure D–45.

26. Wipe off all excess sealant from the seam of the housings.

27. Check the bypass actuator and axle shafts for freedom of movement. The axle shafts should not lock up but may be tight. The bypass actuator shaft must rotate freely.
28. Torque the retaining nut on the brake nut to \textbf{120–185 in-lbs}.

29. Install the brake pins into case and brake arm onto brake bolt.

30. Install the slotted bracket onto brake bolt with the slot aligned over the tab on transaxle.

31. Install washer and brake adjustment nut.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{FigureD-42.png}
\caption{Tighten Brake Bolt Nut}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{FigureD-43.png}
\caption{Brake Retainer Nut Variations}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{FigureD-44.png}
\caption{Install Bypass Valve Control Linkage}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{FigureD-45.png}
\caption{Brake Adjustment}
\end{figure}

32. Install the bypass actuator shaft and control shaft seals by applying petroleum jelly to lip of seal, and wrapping the sharp edge of shaft with plastic tape. Press the seal into case using a driver which only applies force to the outside edge of the seal.

33. Install the bypass valve actuator arm and retaining ring on the bypass shaft. Use care to avoid over-extending the retaining ring.

34. Install the bypass valve linkage arm on top of transaxle case. Torque the mounting capscrew to \textbf{80–100 in-lbs}.

35. Install the hydro control arm on control shaft and secure with a setscrew.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{FigureD-45.png}
\caption{Brake Adjustment}
\end{figure}

35. The parking brake was initially set at a specific running clearance of .025" to .030" between the discs. To check the clearance of the brakes in your transaxle, rotate the brake lever until it contacts the case (fully off position). Place a feeler gauge between the two outer discs. If the clearance is not correct, make the necessary change with the brake adjustment nut.

36. Install brake bolt cotter pin if equipped.
If you have the necessary equipment the transmission manufacturer suggests performing the following test:

37. Prior to adding oil to the transaxle, it is recommended that you test for leaks. This may be performed with a small hand pump or by using compressed air and a regulator. Do not allow more than 10 PSI to be applied or seal damage may occur. To locate a leak, apply a soap mixture around the housing seam and at all lip seals. Do not submerge unit or the brake will be damaged.

38. Fill the transaxle with 2-1/2 quarts (80 ounces) of SAE 20W-50 oil.

39. It is recommended that the unit be purged prior to installing into the vehicle frame. The following is the suggested purging procedures for repaired transaxles.

40. Spin the input shaft in a clockwise direction at 1000-1500 RPM. This may be performed in a drill press (or equivalent).

41. Engage (actuate) the bypass valve.

42. Stroke the control lever forward for five seconds and then reverse for five seconds. Do this three times in each direction.

43. Return the control lever to neutral.

44. Disengage the bypass.

45. Stroke the control lever forward for five seconds and then reverse for five seconds. Do this three times in each direction.

NOTE: It may be necessary to repeat these steps in the vehicle to fully purge the transaxle. See Sec. 2 Purging Air from Transaxle.

Check the oil level after fully purging the unit of air. It should be between 1” and 1.25” from the top of the housing.

After installing the transaxle, make sure all linkages and actuators are functioning properly.
Installation

1. Install the input shaft pulley, lock washer, and nut. Torque to 80–100 in-lbs.

2. Install the transaxle case vent hose.

3. Install the left and right mounting straps on the front of the transaxle case.

4. Place transaxle on a floor jack and position under the tractor. Raise the transaxle up into the tractor while guiding the mounting straps and vent hose into position.

5. Install the axle mounting bolts to frame.

6. Install the hydro drive belt on the input pulley. Check the belt routing through the pivot plate idlers.

7. Install the hydro belt guide/bolt through the left mounting bracket and frame. Adjust the double nut on the guide/bolt so the belt cannot be removed from the pulley.

8. Install the following components using standard torque values:
 - Right transaxle mounting strap
 - Brake rod and cotter key
 - Hydro control rod
 - Hydro fan
 - Fuel tank
 - Rear fender
 - Operator's seat wiring harness

9. Lower tractor to ground and run to purge air from pump. (See Sec. 2 Purging Air from Transaxle) Recheck oil level after shutdown.

NOTE: Oil level should be checked from the vent hose opening with the plastic fitting removed from the case. Oil level should be 1" to 1-1/4" below the top of the vent hole threads.
SECTION CONTENTS

Explosion Diagrams .. 8-2
 38” Deck and Arbors .. 8-2
 38” Clutch and Support .. 8-4
 38” Height Adjustment and Rollers 8-6
 44” Deck and Arbors .. 8-8
 44” Clutch and Support .. 8-10
 44” Height Adjustment and Rollers 8-12

Mower Deck Removal and Installation 8-14

Arbor Repair .. 8-15

Idler Pulley Repair ... 8-18
Apply gasket former to this surface if foam gasket (Ref. No. 26) is not used

Fill arbors with multipurpose grease after gasket former has cured.

Torque nuts to 50-70 ft. lbs.

Torque capscrews to 50-70 ft. lbs.

NOTE: Unless noted otherwise, use the standard hardware torque specification chart.
38" Mower Deck - Deck & Arbors

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>BEARING</td>
<td>21</td>
<td>1</td>
<td>CLAMP</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>HOUSING, Arbor, Top</td>
<td>22</td>
<td>1</td>
<td>SPRING</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>ADAPTER, Blade</td>
<td>23</td>
<td>1</td>
<td>PLUG, Hole</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>WASHER, Spring</td>
<td>24</td>
<td>1</td>
<td>DEFLECTOR, Plastic</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>WASHER, Spline</td>
<td>25</td>
<td>1</td>
<td>ROD, Deflector, Front</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>SHIELD, Grass, Upper</td>
<td>26</td>
<td>2</td>
<td>GASKET, Foam</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>SCREW, Hex, Taptite, 5/16 x 3/4</td>
<td>27</td>
<td>2</td>
<td>NUT, Hex, 1/4-20</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>COLLAR, Mower Arbor</td>
<td>28</td>
<td>2</td>
<td>LOCKWASHER, 1/4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>ARBOR SHAFT KIT (Incl. Ref. No. 8)</td>
<td>29</td>
<td>4</td>
<td>LOCKWASHER, 5/16</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>ARBOR SHAFT ASSY. (Incl. Ref. Nos. 1 & 9)</td>
<td>30</td>
<td>4</td>
<td>NUT, Hex, 5/16-18</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>MOWER HOUSING ASSY</td>
<td>31</td>
<td>2</td>
<td>LOCKWASHER, 7/16</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>SHIELD, Grass, Lower</td>
<td>32</td>
<td>1</td>
<td>WASHER, Plain, 5/16</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>WASHER, Shim</td>
<td>33</td>
<td>4</td>
<td>WASHER, Flat, 5/16</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>HOUSING ASSY., Arbor, Bottom (Incl. Ref. Nos. 19 & 26)</td>
<td>34</td>
<td>2</td>
<td>CAPSCREW, Hex Hd., 7/16-14 x 1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>GUIDE, Upstop, Belt</td>
<td>35</td>
<td>4</td>
<td>WASHER, Flat</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>BLADE, Mower, 22-1/4</td>
<td>36</td>
<td>4</td>
<td>SCREW, Hex, Taptite, 5/16 x 1-1/2</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>PULLEY ASSY., 4-1/4" O.D., LH</td>
<td>37</td>
<td>2</td>
<td>CARRIAGE BOLT, 1/4-20 x 7/8</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>PULLEY ASSY., 6" O.D., RH</td>
<td>38</td>
<td>2</td>
<td>WASHER, Plain</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>GREASE FITTING</td>
<td>39</td>
<td>2</td>
<td>WASHER, Plain</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>BLADE, Mower, 16-1/8</td>
<td>40</td>
<td>1</td>
<td>NUT, Push On</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>2</td>
<td>CAPSCREW, Hex Hd., 7/16-14 x 3-1/4</td>
</tr>
</tbody>
</table>
NOTE: Unless noted otherwise, use the standard hardware torque specification chart.
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SPRING</td>
<td>13</td>
<td>1</td>
<td>HITCH ASSY.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>SPACER</td>
<td>14</td>
<td>1</td>
<td>SPRING</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>FITTING, Grease</td>
<td>15</td>
<td>1</td>
<td>NUT, Hex, Full, 3/8-16</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>SPACER</td>
<td>16</td>
<td>1</td>
<td>LOCKWASHER, 3/8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>BUSHING</td>
<td>17</td>
<td>3</td>
<td>NUT, Hex, Lock, 3/8-16</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>GRIP, Lever</td>
<td>18</td>
<td>2</td>
<td>CAPSCREW, Hex, 3/8-16 x 1-1/2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>SPACER</td>
<td>19</td>
<td>4</td>
<td>WASHER, Plain</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>V-BELT</td>
<td>20</td>
<td>1</td>
<td>WASHER</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>GUARD, Belt</td>
<td>21</td>
<td>2</td>
<td>WASHER, Plain, 3/8 I.D.</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>IDLER PULLEY (Incl. Ref. No. 7)</td>
<td>22</td>
<td>2</td>
<td>CAPSCREW, Hex Hd., 3/8-16 x 2-3/4</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>ROD, Latch</td>
<td>23</td>
<td>1</td>
<td>NUT, Hex, Flange, 2-Way Lock, 3/8-16</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>CLUTCH LEVER ASSY. (Incl. Ref. Nos. 3 & 5)</td>
<td>24</td>
<td>2</td>
<td>NUT, Push On, 3/8</td>
</tr>
</tbody>
</table>
Attach mower leveling adjustment rod (Ref. No. 20) to bottom hole in mower hitch assembly (Ref. No. 13, Clutch and Support Group).

NOTE: Unless noted otherwise, use the standard hardware torque specification chart.

Figure 3. 38" Mower Deck - Height Adjustment & Rollers
38" Mower Deck - Height Adjustment & Rollers

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>PIN, Clevis</td>
<td>24</td>
<td>1</td>
<td>INDICATOR, Cutting Height</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>RING, Retaining</td>
<td>25</td>
<td>1</td>
<td>PLATE, Support</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>BOLT, Shoulder, 3/8-16</td>
<td>26</td>
<td>1</td>
<td>BRACKET, Cutting Height</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>CLIP, Pin, Safety</td>
<td>27</td>
<td>1</td>
<td>LINK ASSY., Lift</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>PIN, Roll, 1"</td>
<td>28</td>
<td>1</td>
<td>SHAFT ASSY., Roller</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>NUT, Hex Hd., 3/8-16</td>
<td>29</td>
<td>1</td>
<td>SPACER</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>LOCKWASHER, 3/8</td>
<td>30</td>
<td>1</td>
<td>KNOB</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>SPACER</td>
<td>31</td>
<td>2</td>
<td>NUT, Hex, Jam, 1/2-13</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>SCREW, Hex, Taptite, 5/16 x 3/4</td>
<td>32</td>
<td>4</td>
<td>LOCKWASHER, 5/16</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>STRAP, Mower Arm Assy.</td>
<td>33</td>
<td>4</td>
<td>NUT, Hex, 5/16-18</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>ROLLER</td>
<td>34</td>
<td>1</td>
<td>COTTER PIN</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>SLIDE</td>
<td>35</td>
<td>1</td>
<td>COTTER PIN</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>BAR, Roller</td>
<td>36</td>
<td>1</td>
<td>WASHER, Flat, 5/16</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>STRAP, Trunnion Retainer</td>
<td>37</td>
<td>4</td>
<td>CAPSCREW, Hex Hd., 5/16-18 x 1-1/4</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>TRUNNION</td>
<td>38</td>
<td>1</td>
<td>CAPSCREW, Hex Hd., 3/8-16 x 1-3/4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>NUT, Adjustor</td>
<td>39</td>
<td>1</td>
<td>WASHER, Plain, 1/2</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>ARM, Rear, Mower, RH</td>
<td>40</td>
<td>8</td>
<td>WASHER, Plain, 41/64 x 1-1/4</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>TRUNNION</td>
<td>41</td>
<td>3</td>
<td>WASHER, Plain, 13/32</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>TRUNNION, Threaded</td>
<td>42</td>
<td>1</td>
<td>NUT, Hex, Whizlock, 3/8-16</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>ROD, Adjustment</td>
<td>43</td>
<td>2</td>
<td>NUT, Hex, Flange, Lock, 1/2-13</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>CRANK, Cutting Height</td>
<td>44</td>
<td>1</td>
<td>CARRIAGE BOLT, 3/8-16 x 1-1/2</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>WASHER, Detent</td>
<td>45</td>
<td>1</td>
<td>PAL NUT</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>ARM ASSY., Mower</td>
<td>46</td>
<td>3</td>
<td>WASHER, 33/64</td>
</tr>
</tbody>
</table>
NOTE: Unless noted otherwise, use the standard hardware torque specification chart.

Apply gasket former to this surface if foam gasket (Ref. No. 26) is not used.

Apply gasket former to this surface if foam gasket (Ref. No. 26) is not used.

Fill arbors with multi-purpose grease.

Torque capscrews to 50-70 ft. lbs.

Torque capscrews to 50-70 ft. lbs.

Figure 4. 44" Mower Deck - Housing, Arbors & Blades
44" Mower Deck - Deck & Arbors

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>BEARING</td>
<td>20</td>
<td>1</td>
<td>COVER, Arbor</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>HOUSING, Arbor, Top</td>
<td>21</td>
<td>1</td>
<td>CLAMP</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>ADAPTER, Blade</td>
<td>22</td>
<td>1</td>
<td>SPRING</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>WASHER, Spring</td>
<td>23</td>
<td>1</td>
<td>PLUG, Hole</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>WASHER, Spline</td>
<td>24</td>
<td>1</td>
<td>DEFLECTOR, Plastic</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>SHIELD, Grass, Upper</td>
<td>25</td>
<td>1</td>
<td>ROD, Deflector, Front</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>SCREW, Hex, Taptite, 5/16-18 x 3/4</td>
<td>26</td>
<td>3</td>
<td>GASKET, Foam</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>COLLAR, Mower Arbor</td>
<td>27</td>
<td>2</td>
<td>NUT, Hex, 1/4-20</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>ARBOR SHAFT KIT (Includes Ref. No. 8)</td>
<td>28</td>
<td>2</td>
<td>LOCKWASHER, 1/4</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>ARBOR SHAFT ASSY. (Incl. Ref. Nos. 1, 8 & 9)</td>
<td>29</td>
<td>3</td>
<td>LOCKWASHER, 7/16</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>MOWER HOUSING ASSY.</td>
<td>30</td>
<td>1</td>
<td>WASHER, Plain, 5/16</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>SHIELD, Grass, Bottom</td>
<td>31</td>
<td>2</td>
<td>CAPSCREW, Hex Hd., 7/16-14 x 1-1/4</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>WASHER, Shim</td>
<td>32</td>
<td>3</td>
<td>CAPSCREW, Hex Hd., 7/16-14 x 1</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>HOUSING ASSY., Arbor, Bottom (Incl. Ref. Nos. 19 & 26)</td>
<td>33</td>
<td>2</td>
<td>CARRIAGE BOLT, 1/4-20 x 7/8</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>COVER, Arbor</td>
<td>34</td>
<td>3</td>
<td>WASHER, Plain</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>BLADE, Mower</td>
<td>35</td>
<td>2</td>
<td>WASHER, Plain</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>PULLEY ASSY.</td>
<td>36</td>
<td>1</td>
<td>NUT, Push On</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>PULLEY ASSY., Deck Drive</td>
<td>37</td>
<td>1</td>
<td>CAPSCREW, Hex Hd., 7/16-14 x 3-1/2</td>
</tr>
</tbody>
</table>
NOTE: Unless noted otherwise, use the standard hardware torque specification chart.
44" Mower Deck - Clutch & Support

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SPRING</td>
<td>16</td>
<td>1</td>
<td>SPRING</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>SPACER</td>
<td>17</td>
<td>1</td>
<td>ROD, Latch</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>V-BELT, Arbor Drive</td>
<td>18</td>
<td>2</td>
<td>NUT, Hex, 3/8-16</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>GREASE FITTING</td>
<td>19</td>
<td>3</td>
<td>LOCKWASHER, 3/8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>V-BELT, Mower Drive</td>
<td>20</td>
<td>2</td>
<td>NUT, Hex, Lock, 3/8-16</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>SPRING</td>
<td>21</td>
<td>2</td>
<td>CAPSCREW, Hex Hd., 3/8-16 x 1-1/2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>GRIP, Lever</td>
<td>22</td>
<td>1</td>
<td>CAPSCREW, Hex Hd., 3/8-16 x 3-1/2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>SPACER</td>
<td>23</td>
<td>2</td>
<td>WASHER</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>SPACER</td>
<td>24</td>
<td>14</td>
<td>WASHER, 5/16</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>BUSHING</td>
<td>25</td>
<td>1</td>
<td>NUT, Hex, Flange, Two-Way Lock, 3/8-16</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>IDLER, Stop</td>
<td>26</td>
<td>1</td>
<td>CARRIAGE BOLT, 3/8-16 x 1-1/2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>PULLEY, Idler (Includes Ref. No. 8)</td>
<td>27</td>
<td>2</td>
<td>NUT, Push On (used on early model Latch Rod, Ref. No. 17)</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>LEVER ASSY, Idler</td>
<td>28</td>
<td>1</td>
<td>CARRIAGE BOLT, 3/8-16 x 2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>LEVER ASSY., Idler Arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>HITCH ASSY.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attach mower leveling adjustment rod (Ref. No. 21) to bottom hole in mower hitch assembly (Ref. No. 16 Clutch and Support Group)

NOTE: Unless noted otherwise, use the standard hardware torque specification chart. See Table of Contents.

Figure 6. 44” Mower Deck - Height Adjustment & Rollers
44" Mower Deck - Height Adjustment & Rollers

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
<th>Ref.</th>
<th>Qt.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>PIN, Clevis</td>
<td>25</td>
<td>1</td>
<td>ARM ASSY., Mower</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>RING, Retaining</td>
<td>26</td>
<td>1</td>
<td>INDICATOR, Cutting Height</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>BOLT, Shoulder, 3/8-16</td>
<td>27</td>
<td>1</td>
<td>BRACKET, Cutting Height</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>CLIP, Pin, Safety</td>
<td>28</td>
<td>1</td>
<td>LINK ASSY, Lift</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>PIN, Roll, 1" Long</td>
<td>29</td>
<td>1</td>
<td>SPACER</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>NUT, Hex, 3/8-16</td>
<td>30</td>
<td>1</td>
<td>KNOB, Height Crank</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>LOCK WASHER</td>
<td>31</td>
<td>2</td>
<td>NUT, Hex, Jam, 1/2-13</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>SPACER</td>
<td>32</td>
<td>2</td>
<td>LOCK WASHER, 5/16</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>SCREW, Hex, Taptite, 5/16 x 3/4</td>
<td>33</td>
<td>2</td>
<td>NUT, Hex, 5/16-18</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>STRAP, Mower Arm Assy.</td>
<td>34</td>
<td>1</td>
<td>COTTER PIN</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>ROLLER</td>
<td>35</td>
<td>1</td>
<td>COTTER PIN</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>SLIDE</td>
<td>36</td>
<td>1</td>
<td>WASHER, Flat, 5/16</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>SHAFT ASSY., Roller, 44" (Incl. Ref. Nos. 2, 8 & 46)</td>
<td>37</td>
<td>2</td>
<td>CAPSCREW, Hex, 5/16-18 x 1-1/4</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>BAR, Roller</td>
<td>38</td>
<td>1</td>
<td>CAPSCREW, Hex, 3/8-16 x 1-3/4</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>PLATE, Mower Support</td>
<td>39</td>
<td>1</td>
<td>WASHER, Plain, 1/2</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>TRU NNION</td>
<td>40</td>
<td>12</td>
<td>WASHER, Plain, 1-1/2</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>NUT, Adjuster</td>
<td>41</td>
<td>5</td>
<td>WASHER, Plain</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>ARM, Rear, Mower, RH</td>
<td>42</td>
<td>1</td>
<td>NUT, Hex, Whizlock, 3/8-16</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>TRU NNION</td>
<td>43</td>
<td>2</td>
<td>NUT, Hex, Flange, Lock, 1/2-13</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>TRU NNION, Threaded</td>
<td>44</td>
<td>4</td>
<td>SCREW, Taptite, 5/16 x 1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>ROD, Adjustment</td>
<td>45</td>
<td>1</td>
<td>CARRIAGE BOLT, 3/8-16 x 1-1/2</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>CRANK, Cutting Height</td>
<td>46</td>
<td>2</td>
<td>WASHER, 5/8 x 1-1/4 x 1/16</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>WASHER, Detent</td>
<td>47</td>
<td>1</td>
<td>PAL NUT</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>UP-STOP, Mower</td>
<td>48</td>
<td>3</td>
<td>WASHER, 33/64</td>
</tr>
</tbody>
</table>
MOWER DECK REPAIR

WARNING

Stop engine and remove key. Do not engage PTO until mower is completely installed and operator is seated.

Mower Removal & Installation

1. Park tractor on a hard, level surface such as a concrete floor. Turn off PTO switch and engine, remove the key and apply parking brake.

2. Place mower in the lowest cutting position using the mower height adjuster (B, Figure 7).

3. Place the mower lift lever (A, Figure 7) in the lowest position.

4. Disconnect the mower lift arm from the tractor lift arm (Figure 8). Re-install washer and safety clip on mower lift arm for storage.

5. Pull/Push back on spring-loaded idler arm (A, Figure 9) and remove the belt from the PTO pulley.

6. Turn wheels straight ahead. Pull back on spring-loaded lever (B, Figure 4) and lift mower hitch off of the tractor brackets.

7. Turn wheels fully left, and slide mower deck out the right side of the tractor.

8. To install the deck, follow the removal instructions in reverse order.
ARBOR REPAIR

NOTE: Spindles on the 38" and 44" mower decks are interchangeable.

1. Remove the mower deck (see Mower Deck Removal and Installation).
2. Remove the belt guards as required to access arbors.

3. Remove the belt guides as required to access arbors.
4. Remove mower drive belt.
5. Remove mower blade on Spindle to be rebuilt. See Mower Blade Service.
6. From the bottom of mower deck, remove the six Taptite hex screws retaining the spindle flange to the mower deck. Note the positions of the longer Taptite hex screws used to mount the belt guides.
8 Mower Deck Repair

Arbor Repair

7. Remove the arbor assembly from the deck.
8. Grip the blade adapter in a soft jaw vise. Remove the cap screw securing the drive pulley to blade shaft.
9. Remove the cap screw, lock washer, heavy washer, pulley and upper grass shield.

11. Remove the arbor from the vise. Using a small screw driver remove the collar from the blade end of the arbor shaft.
12. Remove the blade adapter, lower grass shield, and shim washer from the blade end of the arbor shaft.
12. Using a pair of small screwdrivers, pry apart the upper and lower arbor housings.

13. Remove the arbor shaft assembly from the lower housing.

14. Support the inner race of the bearing, and using a soft face hammer, drive the shaft from the bearing. Repeat with other bearing.

NOTE: If the bearing is seized onto the shaft, more force can be applied by inserting a punch down the bolt hole of the shaft and driving with a ballpeen hammer.

15. Remove the foam gasket.

16. Inspect the arbor shaft for damaged splines and damage to the bearing race area. Replace if damaged. If the bearings are not a press fit on the shaft, replace the shaft.

ARBOR ASSEMBLY

1. While supporting bearing’s inner race, drive the shaft into the bearing until it seats on the shoulder of the shaft.

15. Install the arbor assembly into the lower housing. Pack the housing with multipurpose grease.

NOTE: Clean all excess grease off the mating flange area.

NOTE: Be sure to replace the foam gasket. If a replacement gasket is not used, seal the lower and upper housings with RTV or silicon sealer.

16. Install the upper housing onto the lower housing assembly, align the pins, and clamp together. Check the shaft for smooth, easy rotation of bearings.

NOTE: New bearings will feel stiff but will still rotate smoothly.
17. Assemble the shim washer, lower grass shield, and blade adapter on the blade end of the arbor shaft. Secure with the collar.

NOTE: The blade end of the arbor shaft has recessed spines to hold the collar.

18. Assemble the upper grass shield and pulley on top of the arbor shaft. Secure with the heavy washer, lock washer, and capscrew. Torque to 50-70 ft. lbs.

19. Install the arbor assembly in the mower deck. (See removal steps #1-3) Secure with six Taptite hex screws placing the two longer screws (used to secure the belt guide) in the locations noted during removal.

20. Install belt, guides, and guards. See Figures 5-10.

IDLER PULLEY REPAIR

Refer to Figures 2 and 5 for assembly diagrams.

1. Remove mower deck (see Mower Removal and Installation).

2. Remove the nut and capscrew securing the idler pulley to the clutch lever.

2. **NOTE:** Note the location and quantity of spacers and washers above and below Idler when removing the capscrew. Also note the position of the belt guide.

3. Place the new Idler assembly on the clutch lever and secure with the capscrew and nut. Make sure the correct quantity of washers/spacers are placed above and below the pulley.

4. Align the belt guide to its original position.

![Figure 18. Arbor and Housing Assembly](image1)

![Figure 19. Idler Removal](image2)